Совместная работа нагнетателей

Автоматизированная система управления компрессорной установки
ОПИСАНИЕ ФУНКЦИОНИРОВАНИЯ КОМПРЕССОРНОЙ УСТАНОВКИ КОМПЛЕКСА ГИДРООЧИСТКИ МОТОРНОГО ТОПЛИВА (Л-24/6) РАЗРАБОТКА СИСТЕМЫ УПРАВЛЕНИЯ КУ Определение основных задач синтеза системы управления КУ Алгоритм нормального останова компрессора Совместная работа нагнетателей Последовательное включение нагнетателей СОЗДАНИЕ ЛОГИЧЕСКОЙ МОДЕЛИ СИСТЕМЫ УПРАВЛЕНИЯ КУ Рассмотрение виброакустических характеристик полученной модели Синтез системы управления привода компрессорной установки Реализация корректирующих устройств на регуляторах Построение алгоритма работы системы Аппаратная и программная реализация системы управления КУ Выбор структуры контроллера и его состава Выбор источника питания Датчик перепада давления модели 3051С (используется на трубопроводе между входом и выходом компрессора) Термоэлектрический преобразователь ТХА 241 (анализ состояния температуры опорного подшипника) Запорная арматура системы управления Разработка требований безопасности труда для обслуживающего персонала Мероприятия по производственной санитарии и гигиене труда Мероприятия по устранению шумов и вибраций Меры по устранению вредного воздействия электромагнитного поля Авария компрессорного узла;
185895
знаков
9
таблиц
45
изображений

2. Совместная работа нагнетателей

В состав технологических схем подачи, как правило, несколько нагнетателей. Совместная работа нагнетателей в большинстве случаев вызвана следующими причинами:

־  один нагнетатель не может обеспечить требуемую подачу или давление, а замена его другим, более мощным, невозможна;

־  в процессе эксплуатации в соответствии с требованиями техно­логического процесса возникают режимы, связанные с продолжительным изменением расхода и сопротивления сети (изменение режима осуществляется отключением одного из нагнетателей);

־  требуется обеспечить надежность работы всей системы в целом;

־  архитектурно-планировочные решения зданий приводят к со­зданию сложных разветвленных сетей, для регулирования которых с наибольшей эффективностью требуется установка нескольких нагнетателей.

Включение нагнетателей в совместную работу может быть па­раллельным, последовательным и смешанным (комбинированным).

3. Параллельное включение нагнетателей

Параллельное включение двух и большего числа нагнетателей рекомендуется тогда, когда требуется увеличение подачи, а соответствующее увеличение частоты вращения рабочего колеса или размеров нагнетателя невозможно из-за чрезмерного усиления шума, конструктивных или архитектурно-планировочных причин.

Известны три основные схемы параллельного включения нагнетателей: полностью параллельное включение (рис. 2.5.3, а) и полупараллельное включение по схемам, показанным на рис. 2.5.2, б и в.

На рис. 2.5.3 в сеть включены нагнетатели с одинаковыми характеристиками. Для упрощения анализа пренебрежем сопротивлением индивидуальных участков сети (участки 1 - 2). В этом случае, как и в случае любого совместного включения, главным является определение режима работы не только всей системы в целом, но и каждого из нагнетателей. Функциональная зависимость давления нагнетателя от его подачи сложна и чаще всего задается графически в виде характеристики P=f(L), поэтому наиболее простой способ анализа – графический. Обычно применяют метод суммарной характеристики нагнетателей.

Рис. 2.5.3

Давления, создаваемые каждым нагнетателем в точках 1 и 2, одинаковы, а общая подача равна сумме подач отдельных нагнетателей. Отсюда следует правило построения суммарной характеристики параллельно включенных нагнетателей: при одинаковом давлении нужно сложить подачи.

Построение суммарной характеристики давления показано на рис. 2.5.4. Абсциссы а, представляющие собой подачу одного нагнетателя, суммируются при каждом значении давления. При включении нагнетателей в сеть с характеристикой (1 + 1) режим работы определяется точкой А. При этом суммарная подача нагнетателей определяется величиной LA(1+1) а суммарное давление - величиной Р1(1+1), при этом Р1(1+1) = РА(1+1), т.е. давление, создаваемое каждым нагнетателем при совместной работе, равно суммарному давлению. Подача каждого нагнетателя составляет половину общей и может быть определена графически по положению точки А", т. е. L1(1+1) = 0.5LА(1+1) = LA. КПД обоих нагнетателей равен КПД каждого из них и определяется пересечением ординаты, проходящей через точку А", с характеристикой КПД нагнетателя. Пересечение этой ординаты с характеристикой мощности определяет затраты мощности каждым нагнетателем. Суммарные затраты мощности равны сумме мощностей отдельных нагнетателей: NA(l+1) = 2N1(1+1).

Рис. 2.5.4

При отключении одного из нагнетателей характеристика сети DP(L(1)) становится круче вследствие уменьшения площади поперечного сечения для прохода воздуха между точками 1 и 2. Рабочая точка переходит из положения А в положение А! (см. рис. 4.14). При этом параметрами работы нагнетателя становятся L1(1) > L1(1+1), P1(1) < P1(1+1) и N1(1) > N1(1+1). Это приводит к перегреванию обмоток электродвигателя. Поэтому при выключении одного из нагнетателей его индивидуальный участок необходимо перекрыть клапаном (чтобы исключить бесполезное перетекание газа по нему из-за разности давлений Р2 - Р1), а в сеть оставшегося в работе нагнетателя ввести дополнительное давление DРШ так, чтобы рабочая точка переместилась в положение А". При этом затраты мощности составляют N1(1+1), и перегревания электродвигателя не происходит.

Построение суммарной характеристики нагнетателей с разными характеристиками в принципе не отличается от предыдущего построения.

При параллельной работе нагнетателей с разными характеристиками представляется целесообразным определять средний КПД нагнетателей:

(2.5.1)

Из формулы (2.5.1) следует, что более мощные нагнетатели должны работать с максимальным КПД, а регулировать расход в системе целесообразнее менее мощным нагнетателем.

Рассмотренный выше метод построения суммарной характеристики нагнетателей можно применять при любом числе нагнетателей.


Информация о работе «Автоматизированная система управления компрессорной установки»
Раздел: Промышленность, производство
Количество знаков с пробелами: 185895
Количество таблиц: 9
Количество изображений: 45

Похожие работы

Скачать
167649
57
1

... сигналами времени. Ядро предлагает интерфейс для программирования приложения с целью получения функций в виде отдельных программ. 1.2 Разработка автоматизированной системы управления электроснабжением КС «Ухтинская» 1.2.1 Цель создания АСУ-ЭС Целью разработки является создание интегрированной АСУ ТП, объединяющей в единое целое АСУ электрической и теплотехнической частей электростанции, ...

Скачать
26896
4
0

... по окончании работ: Сделать соответствующие записи в документации. Убрать инструмент в места хранения . Выключить освещение. Закрыть помещение на ключ. 2 Требования к электрооборудованию Как и в других электроустановках, компрессорная установка имеет главный электропривод, а именно асинхронный двигатель с короткозамкнутым ротором, который приводит во вращения поршни компрессора. Двигатель ...

Скачать
121460
17
15

... , преобразования их в цифровую форму, передачей их в ПК через параллельный порт и последующей обработки этих данных разработанной программной системой автоматического контроля технологических параметров. 9.2 Структура лабораторного стенда Лабораторный стенд основывается на интегральной микросхеме аналого-цифрового преобразователя 572ПВ4, которая представляет собой 8-ми канальную 8-ми ...

Скачать
28840
2
2

... более 40 мкм Максимальная влажность газа на всасывании – состояние насыщения при отсутствии капельной влаги. Температура газа на всасывании от 233 К до 318 К (от -40°С до+45°С). Тип компрессора — двухступенчатый центробежный нагнетатель с вертикальным разъемом, спроектированный для параллельной работы в группе или для одного агрегата. Основные параметры нагнетателя приведены в ГОСТ 23194—83. ...

0 комментариев


Наверх