Определение основных задач синтеза системы управления КУ

Автоматизированная система управления компрессорной установки
ОПИСАНИЕ ФУНКЦИОНИРОВАНИЯ КОМПРЕССОРНОЙ УСТАНОВКИ КОМПЛЕКСА ГИДРООЧИСТКИ МОТОРНОГО ТОПЛИВА (Л-24/6) РАЗРАБОТКА СИСТЕМЫ УПРАВЛЕНИЯ КУ Определение основных задач синтеза системы управления КУ Алгоритм нормального останова компрессора Совместная работа нагнетателей Последовательное включение нагнетателей СОЗДАНИЕ ЛОГИЧЕСКОЙ МОДЕЛИ СИСТЕМЫ УПРАВЛЕНИЯ КУ Рассмотрение виброакустических характеристик полученной модели Синтез системы управления привода компрессорной установки Реализация корректирующих устройств на регуляторах Построение алгоритма работы системы Аппаратная и программная реализация системы управления КУ Выбор структуры контроллера и его состава Выбор источника питания Датчик перепада давления модели 3051С (используется на трубопроводе между входом и выходом компрессора) Термоэлектрический преобразователь ТХА 241 (анализ состояния температуры опорного подшипника) Запорная арматура системы управления Разработка требований безопасности труда для обслуживающего персонала Мероприятия по производственной санитарии и гигиене труда Мероприятия по устранению шумов и вибраций Меры по устранению вредного воздействия электромагнитного поля Авария компрессорного узла;
185895
знаков
9
таблиц
45
изображений

2.3 Определение основных задач синтеза системы управления КУ

В соответствии с параметрами режима работы, указанных в таблице 1.1, выделим основные задачи управления КУ. Для упрощения логической схемы системы управления весь цикл работы был разбит на функциональные модули, в каждом из которых выполняются свои операции и регистрируются нормативные значения технологических параметров. Весь цикл работы сводится к соблюдению режимов переключения между модулями.

Рассмотрим каждый из них отдельно.

1. Алгоритм пуска компрессора

Пуск компрессора 5ГЦ осуществляется подачей электропитания на электродвигатель. Поэтому данным алгоритмом "Пуска компрессора" предусматривается выполнение всех необходимых операций подготовки к пуску, контроль предпусковых параметров и условий и выдача на "верхний уровень" в систему управления компрессорной установкой сигнала о готовности компрессора к пуску: "Компрессор к пуску готов".

Если хотя бы один параметр или условие не удовлетворяют предпусковым требованиям, сигнал "Компрессор к пуску готов" не должен формироваться. Сигнал о готовности компрессора к пуску должен быть сформирован системой КиПа в виде "сухого контакта", выдаваемого на "верхний уровень", с одновременным выводом на дисплей компьютера надписи "Компрессор к пуску готов" вместо надписи "Подготовка компрессора к пуску".

1.1 Сигнал "Компрессор к пуску готов" должен формироваться при выполнении следующих предпусковых требований:

1.1.1 Давление газа на входе в стойку управления (РТ1), изб., не менее 6,2 кгс/см2;

1.1.2 Давление масла в напорном коллекторе (ВР108), изб., не менее 1,5 кгс/см2;

1.1.3 Температура масла в напорном коллекторе (ВК2), не более 450С.

1.2 В процессе подготовки компрессора к пуску система КиПа должна производить пуск основного маслонасоса при выполнении следующих условий:

При не выполнении хотя бы одного из этих условий система КиПа не должна позволять пуск маслонасоса (блокировать пуск маслонасоса) и должна выводить на дисплей оператора сигнал "Запрет пуска маслонасоса по РТ4 менее 1,5 кгс/см2.

Выбор основного насоса осуществляется путем считывания часов наработки каждого из насосов и включение потока, переключающим цепи управления маслонасосами (выбор осуществляется только при неработающих маслонасосах).

При включении маслонасоса на мнемосхеме должна загораться световая индикация о его включении.

1.3 Момент начала пуска компрессора фиксируется по сигналу из САУ компрессорной установки в виде "сухого контакта" или по достижению частоты вращения ротора значения 300 об/мин. В процессе пуска система КиПа должна контролировать параметры в соответствии с таблицей 1.1 с записью их в память на жесткий диск компьютера и указанием времени пуска. Нормальный пуск (без применения тиристорной системы управления эл. приводом) осуществляется в течении 8¸30 секунд, с момента начала пуска и до выхода на номинальный режим по частоте вращения ротора. На это время уставки на срабатывание предупредительной сигнализации и аварийной защиты должны программно удваиваться по следующим параметрам:

-  радиальное виброперемещение шеек ротора (S1B, S1Г, S2B, S2Г);

-  осевой сдвиг (OS1, OS2).

1.4 Окончание пуска компрессора и выход его на номинальный режим работы фиксируется системой КиПа по достижению частоты вращения ротора (n) значения 8412 об/мин.

По окончании пуска на дисплей оператора должна выводиться надпись "Работа компрессора".

1.5 При срыве пуска, когда зафиксировано начало пуска по достижению частоты вращения ротора значения 300 об/мин, а фиксации окончания пуска по достижению частоты вращения ротора значения 8412 об/мин не происходит, возможны два варианта развития событий:

1)  частота вращения ротора достигла значения 0±10 об/мин. Это означает, что произошел останов компрессорной установки и система КиПа должна отреагировать по алгоритму аварийного останова;

2)  частота вращения ротора "зависла" между значениями 0 и 8412 об/мин. Система КиПа должна работать по алгоритму "Пуск компрессора", т.е. ожидать фиксации окончания пуска или аварийного останова.

Вывод: из анализа алгоритма следует, что успешное начало работы зависит как от межмодульных параметров, так и характеристик самой системы (в основном, системы охлаждения и пусковых элементов двигателя).

2. Алгоритм нормальной работы компрессора

В процессе нормальной работы компрессора система КиПа контролирует значения параметров, представленных в таблице 1.1 к настоящим алгоритмам, и обеспечивает возможность вывода текущего значения любого параметра на дисплей в виде графика, в т.ч. группового, и в виде таблицы текущих значений параметров по соответствующей команде оператора.

Через каждые 8 (12) часов работы компрессора система КиПа должна автоматически записать значения контролируемых параметров в память на жесткий диск компьютера.

В процессе работы компрессора система управления должна производить включение резервного маслонасоса в случае снижения давления масла в напорном коллекторе (ВР108) до значения 1,4 кгс/см2 изб. и выключение его при достижении давления ВР108 значения 2,0 кгс/см2.

Сигналом для включения резервного маслонасоса может быть и отключение основного маслонасоса (например: сработала защита эл. привода маслонасоса по перегрузке). В этом случае должен тут же включиться резервный насос. Включение резервного маслонасоса должно происходить по возможности быстрей для того, чтобы не успела сработать аварийная защита по давлению масла в напорном коллекторе.

Однако при срабатывании должна включиться световая и звуковая сигнализация в операторном помещении. Если сработала сигнализация по нескольким параметрам одновременно или последовательно, то каждая из них записывается в своей строке.

При возвращении значения параметра в пределы нормы световая и звуковая сигнализация должны отключиться.


Информация о работе «Автоматизированная система управления компрессорной установки»
Раздел: Промышленность, производство
Количество знаков с пробелами: 185895
Количество таблиц: 9
Количество изображений: 45

Похожие работы

Скачать
167649
57
1

... сигналами времени. Ядро предлагает интерфейс для программирования приложения с целью получения функций в виде отдельных программ. 1.2 Разработка автоматизированной системы управления электроснабжением КС «Ухтинская» 1.2.1 Цель создания АСУ-ЭС Целью разработки является создание интегрированной АСУ ТП, объединяющей в единое целое АСУ электрической и теплотехнической частей электростанции, ...

Скачать
26896
4
0

... по окончании работ: Сделать соответствующие записи в документации. Убрать инструмент в места хранения . Выключить освещение. Закрыть помещение на ключ. 2 Требования к электрооборудованию Как и в других электроустановках, компрессорная установка имеет главный электропривод, а именно асинхронный двигатель с короткозамкнутым ротором, который приводит во вращения поршни компрессора. Двигатель ...

Скачать
121460
17
15

... , преобразования их в цифровую форму, передачей их в ПК через параллельный порт и последующей обработки этих данных разработанной программной системой автоматического контроля технологических параметров. 9.2 Структура лабораторного стенда Лабораторный стенд основывается на интегральной микросхеме аналого-цифрового преобразователя 572ПВ4, которая представляет собой 8-ми канальную 8-ми ...

Скачать
28840
2
2

... более 40 мкм Максимальная влажность газа на всасывании – состояние насыщения при отсутствии капельной влаги. Температура газа на всасывании от 233 К до 318 К (от -40°С до+45°С). Тип компрессора — двухступенчатый центробежный нагнетатель с вертикальным разъемом, спроектированный для параллельной работы в группе или для одного агрегата. Основные параметры нагнетателя приведены в ГОСТ 23194—83. ...

0 комментариев


Наверх