1.4 Отношения эквивалентности на числовой прямой

Пусть задано отношение  на множестве . В случае, когда  – числовая прямая, отношение  отождествляется с некоторым подмножеством числовой плоскости, т.е. прямого произведения . В этом параграфе будут рассмотрены геометрические свойства множества  на плоскости в случае, когда отношение  есть эквивалентность.

Согласно определению 1.2.1 отношение  называется эквивалентностью, если оно рефлексивно, симметрично и транзитивно. Каждое из этих свойств порождает некоторое геометрическое свойство множества . Координаты точки на плоскости будем обозначать .

1. Рефлексивность. Из того, что  для всех , следует, что множество  содержит главную диагональ (свойство ).

2. Симметричность. Симметричность означает, что если , то и , т.е. что множество  симметрично относительно главной диагонали (свойство ).

3. Транзитивность. Транзитивность означает, что если  и , то и . Точка  является четвертой вершиной прямоугольника, три вершины которого находятся в точках  и . Заметим, что вершина  лежит на биссектрисе координатного угла – главной диагонали координатной плоскости. Поэтому геометрически свойство транзитивности можно сформулировать следующим образом:

Множество  на плоскости определяет транзитивное отношение тогда и только тогда, когда для любого прямоугольника, одна вершина которого  лежит на главной диагонали, а две соседние с  вершины принадлежат , вершина , противоположная , также принадлежит  (свойство ).

Замечание. Если отношение  является симметричным, то геометрическая формулировка транзитивности несколько упрощается. А именно:

Множество  на плоскости, симметричное относительно главной диагонали, определяет транзитивное отношение тогда и только тогда, когда для любого прямоугольника, одна вершина которого лежит на главной диагонали, а две другие принадлежат , четвертая вершина также принадлежит  (свойство ).

Разница с предыдущим утверждением состоит в том, что вершины, принадлежащие , не обязаны быть соседними с вершиной, лежащей на диагонали. Покажем, что для симметричного  свойство , влечет . Пусть, например, вершина, лежащая на диагонали, имеет координаты  и  и ; покажем, что . В самом деле, в силу симметрии, вместе с  имеем . Если в качестве вершины на диагонали взять теперь , а в качестве соседних с ней вершин, принадлежащих ,  и , то, в силу свойства  получаем .

Заметим, что класс эквивалентности, содержащий точку , есть проекция пересечения множества  и прямой  на ось ординат.

Сейчас мы приведем некоторые примеры множеств на плоскости, определяющих отношение эквивалентности.

1 Пример. (тривиальный). Множество  вся плоскость. Выполнение свойств , ,  очевидно. Все точки исходной прямой  отождествляются, т.е. входят в один класс эквивалентности.

Замечание. Для любого , если множество , определяющее отношение эквивалентности, содержит полосу , то оно совпадает со всей плоскостью. В самом деле, вместе с любой точкой  множество  содержит все внутренние точки квадрата с вершинами , , , , т.е. полосу . Ясно, что таким образом свойство "принадлежать " распространяется на все точки плоскости.

2 Пример. (периодичность). Возьмем которое число. Пусть множество  состоит из прямых , где  – произвольное целое число. Выполнение свойств  и  очевидно, и если , , то .

3 Пример. "Все константы равны единице, кроме нуля". (Такое утверждение высказал И.М. Гельфанд на одной из своих лекций.) В этом примере множество  есть вся плоскость с выброшенными осями координат и добавленным началом координат. Иначе говоря,  всегда, кроме случая ,  и ему симметричного. Если точки ,  принадлежат , то либо , и тогда , , либо , и тогда  и . В обоих случаях .

4 Пример. (Все целые числа равны друг другу.) Множество  состоит из главной диагонали и всех точек с целыми координатами.

Очевидно, можно рассматривать и конечные варианты такой эквивалентности типа

5 Пример. (Все числа, не большие единицы по модулю, равны друг другу.) Множество  состоит из диагонали и замкнутого единичного квадрата. Очевидно, множество, состоящее из открытого (или полузамкнутого: ) квадрата, также дает эквивалентность.


2. Отношение толерантности

2.1 Определения, примеры, свойства

2.1.1 Определение

Отношение  на множестве  называется толерантностью или отношением толерантности, если оно рефлексивно и симметрично.

Пример. Множество  состоит из четырехбуквенных русских слов – нарицательных существительных в именительном падеже. Будем называть такие слова сходными, если они отличаются не более чем на одну букву. Известная задача "Превращение мухи в слона" в точных терминах формулируется так:

Найти такую последовательность слов, начинающуюся словом "муха" и кончающуюся словом "слон", любые два соседних слова в которой сходны (в смысле только что данного определения).

Приведем решение этой задачи: Муха – мура – тура – тара – кара – каре – кафе – кафр – каюр – каюк – крюк – крок – срок – сток – стон – слон.

 


Информация о работе «Отношения эквивалентности и толерантности и их свойства»
Раздел: Математика
Количество знаков с пробелами: 66989
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
102605
4
0

... чем «я», делает мировосприятие более многомерным, целостным, а значит более адекватным реальности [10, c.23-27]. Глава 2. Государственно-правовое регулирование проблем толерантности в современном обществе   2.1 Анализ правовых актов по проблемам толерантности В Декларации о ликвидации всех форм дискриминации на основе религии или убеждений, которая была принята Генеральной Ассамблеей ООН 25 ...

Скачать
107976
3
5

... сигналов, передающихся от одного живого организма другому (от родителей - потомкам) или от одних клеток, тканей, органов другим в процессе развития особи; 6.   в математике, кибернетике – количественная мера устранения энтропии (неопределенности), мера организации системы; 7.         в философии – свойство материальных объектов и процессов сохранять и порождать определенное состояние, которое в ...

Скачать
611708
8
6

... в отечественной теории и практике психологических измерений. Хотя концепт осмысленности измерения развивается с трансформацией идей Стивенса и разработкой проблем статистики и логики, его положения относительно шкалирования, по проблемам измерений в психологии и связанной с ними осмысленностью измерений требуют, на наш взгляд, критического анализа привычной практики использования психологического ...

Скачать
33860
0
1

... N(X)N, состоящее из тех и только из тех i, для которых = 1. Это объясняет, почему изложение вероятностных и статистических результатов, относящихся к анализу данных, являющихся объектами нечисловой природы перечисленных выше видов, велось [37, гл.4] на языке конечных случайных множеств. Множества как исходные данные появляются и в иных постановках. Из геологических реалий исходил Ж.Матерон ...

0 комментариев


Наверх