2. Дифференциальное уравнение вида

называется дифференциальным уравнением с разделёнными переменными.

Чтобы найти его общее решение, достаточно проинтегрировать обе его части.

.

Дифференциальное уравнение вида

называется дифференциальным уравнением с разделяющимися переменными.

Чтобы найти его общее решение, надо сначала отделить переменные

а затем проинтегрировать


Пример 7.4. Найти общее решение уравнения

Решение. Сначала отделим переменные

,

а затем проинтегрируем

, , у=Сlnx.

3. Функция  называется однородной функцией п-го измерения относительно переменных х и у, если для произвольного числа  выполняется тождество

Пример 7.5.

1) =,

- однородная функция третьего измерения.

2) =- однородная функция нулевого измерения.

Уравнение y’=называется однородным дифференциальным уравнением первого порядка, если функция является однородной функцией нулевого измерения, то есть, если

(7.2)

Очевидно, уравнение вида

будет однородным тогда и только тогда, когда функции Р(х,у) и Q(х,у), будут однородными функциями одного и того же измерения. Например, уравнение

однородное. Считая, в соотношении (7.2) , получим

Поэтому можно дать ещё одно определение однородного уравнения: однородным дифференциальным уравнением называется уравнение вида

(7.3)

Применим в уравнении (7.3) подстановку

, ,

Тогда получим уравнение с разделяющимися переменными

,

которое всегда интегрируется в квадратурах:

,

.

После интегрирования надо сделать обратную замену, то есть вместо и нужно подставить

Вывод. Однородные дифференциальные уравнения первого порядка всегда сводятся к уравнениям с разделяющимися переменными подстановкой ,.

Пример 7.6. Найти общее решение уравнения

Решение. Применим подстановку ,. Тогда получим

,

, ,

, , .

Пример 7.7. Решить задачу Коши

, у(1)=2.

Решение. Поскольку обе функции

однородные измерения два, то данное уравнение однородное. Запишем его в виде

и применим подстановку ,. Тогда получим

,

, , .

Из начального условия найдём постоянную интегрирования:

Подставив найденное значение С в общее решение, получим решение задачи Коши:


Лекция 16. Тема – Уравнения Бернулли. Комплексные числа. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

 

План.

1.Линейные дифференциальные уравнения первого порядка. Уравнения Бернулли.

2. Комплексные числа.

3. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

1. Линейным дифференциальным уравнением первого порядка называется уравнение вида

(7.4)

где - известные функции переменной х.

Термин «линейное уравнение» поясняется тем, что неизвестная функция у и её производная у’ входят в уравнение в первой степени, то есть линейно.

Линейное дифференциальное уравнение первого порядка всегда интегрируемо в квадратурах, поскольку его можно всегда свести к двум уравнениям с разделяющимися переменными таким образом (методом Бернулли).

Будем искать решение уравнения (7.4) в виде произведения

(7.5)

где - неизвестные функции х. Находя производную

и подставляя значение у и у’ в уравнение (7.5), получим

(7.6)

Выберем функцию  так, чтобы выражение в скобках равнялось нулю. Для этого надо решить уравнение с разделяющимися переменными.

Решая его, находим

. (7.7)

Постоянную интегрирования в выражении (7.7) не пишем, поскольку нам достаточно найти только какую-нибудь одну функцию , которая преобразовывает в ноль выражение в скобках в уравнении (7.6).

Подставляя (7.7) в (7.6), получим

(7.8)

Подставляя (7.7) и (7.8) в (7.5), найдём общее решение уравнения (7.4):

(7.9)

Замечание. На практике помнить формулу (7.9) не обязательно: достаточно лишь помнить, что линейные дифференциальные уравнения первого порядка, а также уравнения Бернулли, решаются методом Бернулли с помощью подстановки .

Уравнением Бернулли называется уравнение вида

где - известные функции х, .


Информация о работе «Функция многих переменных»
Раздел: Математика
Количество знаков с пробелами: 40147
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
14269
0
4

... (x, y) выполняется неравенство: . При этом, т. е. приращение функции > 0. Определение 3: Точки локальных минимума и максимума называются точками экстремума. Условные Экстремумы При отыскании экстремумов функции многих переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных. Пусть заданы функция ...

Скачать
19131
0
6

... p и q, получим некоторые наборы (в зависимости от p и q) на которых функция достигает максимума. 3. Решение задачи с использованием метода покоординатного спуска   3.1 Описание метода покоординатного спуска Изложим этот метод на примере функции трех переменных . Выберем нулевое приближение . Фиксируем значения двух координат . Тогда функция будет зависеть только от одной переменной ; ...

Скачать
34366
0
16

... , Флетчера-Ривса). Методы второго порядка, использующие, кроме того, и информацию о вторых производных функции f (x) (метод Ньютона и его модификации). Метод конфигураций (Хука - Дживса) Следует выделить два этапа метода конфигураций: 1) исследование с циклическим изменением переменных и 2) ускорение поиска по образцам. Исследующий поиск начинается в точке х0, называемой старым базисом. ...

Скачать
28673
2
2

... , что и ошибки эксперимента, то итерации надо прекращать. Поскольку вблизи минимума чаще всего ~, то небольшая погрешность функции приводит к появлению довольно большой области неопределенности ~. 2. Минимум функции многих переменных   2.1 Рельеф функции Основные трудности многомерного случая удобно рассмотреть на примере функции двух переменных . Она описывает некоторую поверхность в ...

0 комментариев


Наверх