Структурная схема модели в неподвижной системе координат и её поблочное описание

Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB
Возможности, визуализация и графические средства Генераторный режим с отдачей энергии в сеть Асинхронные двигатели с улучшенными пусковыми свойствами Реакторный и автотрансформаторный пуск АД Регулирование скорости изменением числа пар полюсов МАТЕМАТИЧЕСКИЕ МОДЕЛИ АСИНХРОННОЙ МАШИНЫ Математическая модель асинхронной машины в осях, вращающихся с произвольной скоростью Преобразование уравнений асинхронной машины в неподвижной системе координат Структурная схема модели в неподвижной системе координат и её поблочное описание Результаты моделирования Результаты моделирования Объект исследования Снятие динамической характеристики при параметрах короткого замыкания Снятие искусственных механических характеристик Снятие естественной механической характеристики Определение затрат времени на разработку (ПМО) по стадиям проектирования Расчет затрат на требующееся машинное время Технические методы увеличения безопасности работы за компьютером
114601
знак
5
таблиц
73
изображения

4.4 Структурная схема модели в неподвижной системе координат и её поблочное описание

По системе уравнений (4.2) собирается схема модели обобщённой машины в неподвижной системе координат (рисунок 4.5) с рассчитанными параметрами. На входы модели подаются напряжения, сдвинутые по фазе на 90 электрических градусов:

где - амплитудное значение номинального фазного напряжения.

При номинальном питающем напряжении реализуется прямой пуск АД


Рисунок 4.5 - Структурная схема модели обобщённой асинхронной машины в неподвижной системе координат

Блоки Usα и Usβ (рисунок 4.6) являются генераторами гармонических сигналов, Usα – косинусоиды, Usβ – синусоиды. Они имитируют работу источников напряжения.

Настраиваемыми параметрами являются:

Sine type – тип синусоидальной волны,

Amplitude - амплитуда сигнала, для данной схемы  В,

Bias – смещение (постоянная составляющая синусоиды),

Frequency – угловая частота колебаний, для данной схемы равная ,

Phase – начальная фаза (в радианах), равная:

 - для косинусоиды, 0 – для синусоиды,

Sample time – величина дискрета времени.


 

а) б)

Рисунок 4.6 - Блок Usα: а) внешний вид, б) окно параметров

Блок  (рисунок 4.7) осуществляет умножение входного сигнала на постоянную величину, значение которой задаётся в настройке блока.

Аналогичные в схеме блоки: , , , , , .

Настраиваемыми параметрами являются:

Gain – коэффициент усиления, для данной схемы =5.756,

Multiplication – тип способа умножения.

 

а) б)

Рисунок 4.7 - Блок : а) внешний вид, б) окно параметров


Блок Sum (рисунок 4.8) суммирует поступающие на него сигналы (в том числе с разными знаками).

Настраиваемыми параметрами являются:

Icon shape – форма изображения (круг или прямоугольник),

List of signs – список входов и их знаки.

а) б)

Рисунок 4.8 - Блок Sum: а) внешний вид, б) окно параметров

Блок  (рисунок 4.9) реализует звено введённой в него передаточной функции. Аналогичный в схеме блок: .

Настраиваемыми параметрами являются:

Numerator – числитель, для данной схемы ,

Denominator – делитель, для данной схемы .

а) б)

Рисунок 4.9 - Блок : а) внешний вид, б) окно параметров


Блок Klych (рисунок 4.10) служит для переключения типа момента нагрузки на валу, либо М2 либо α•М2. Переключение происходит при двойном нажатии правой кнопкой мыши на блоке.

Настраиваемых параметров не имеет.

Рисунок 4.10 - Блок Klych

Блок Product (рисунок 4.11) выполняет умножение (деление) входных сигналов.

Настраиваемыми параметрами являются:

Number of inputs – количество входов,

Multiplication – тип способа умножения.

а) б)

Рисунок 4.11 - Блок Product: а) внешний вид, б) окно параметров

Блок М2 (рисунок 4.12) формирует постоянную величину нагрузки на валу, которая является неизменной во времени.

Настраиваемыми параметрами являются:

Constant value – постоянная величина.


а) б)

Рисунок 4.12 - Блок М2: а) внешний вид, б) окно параметров

Блок α•М2 (рисунок 4.13) является задатчиком нагрузки и устанавливает на валу линейно изменяющийся во времени момент нагрузки.

Настраиваемыми параметрами являются:

Slope – изменение величины за 1 секунду. В зависимости от знака возрастает или убывает,

Start time – момент времени в который начинает изменятся нагрузка,

Initial output – начальное значение, с которого начнётся изменение нагрузки.

а) б)

Рисунок 4.13 - Блок α•М2: а) внешний вид, б) параметры


Блок Integrator (рисунок 4.14) представляет идеальное интегрирующее звено. Он позволяет осуществить интегрирование поступающего на него сигнала в непрерывном времени.

Настраиваемыми параметрами являются:

External reset – подключение дополнительного управляющего сигнала,

Initial condition source – определение источника (внутренний или внешний),

Initial condition – начальное значение выходной величины,

Limit output – ограничение величины выхода,

Upper saturation limit – верхнее предельное значение выходной величины,

Lower saturation limit – нижнее предельное значение выходной величины,

Show saturation port – показать порт насыщения,

Show state port – показать порт состояния,

Absolute tolerance – допустимая предельная величина абсолютной погрешности.

а) б)

Рисунок 4.14 - Блок α•М2: а) внешний вид, б) параметры


Графический дисплей «wm, M=f(t)» (рисунок 4.15) позволяет в ходе моделирования наблюдать графики переходных процессов скорости и момента во времени. По горизонтальной оси откладывается значение модельного времени, а по вертикали значение входной величины, отвечающее этому моменту времени. Окно параметров вызывается нажатием на иконку .

Настраиваемыми параметрами являются:

Number of axes – количество осей,

Time range – интервал времени,

Tick labels – метки осей,

Sampling – используется только для дискретных во времени процессов. Его значение (1), установленное по умолчанию, для непрерывных процессов изменять не рекомендуется. Позволяет задать периодичность (через сколько дискретов времени) отображения значений времени.

а) б) в)

Рисунок 4.15 - Блок «wm, M=f(t)»: а) внешний вид, б) внутренний вид, в) окно параметров

Шинный формирователь Mux (рисунок 4.16) выполняет объединение входных величин в единый выходной вектор (шину), что очень удобно, так как схема получается мене загромождённой.

Настраиваемыми параметрами являются:

Number of inputs – число входов,

Display option – вид отображения блока.

а) б)

Рисунок 4.16 - Блок Mux: а) внешний вид, б) окно параметров

Цифровой дисплей «wm, M» (рисунок 4.17) выводит на экран числовые значения входящих в блок величин (скорости и момента).

Настраиваемыми параметрами являются:

Format – формат вывода чисел,

Decimation – позволяет задать периодичность (через сколько дискретов времени) отображения значений времени,

Sample time – используется только для дискретных во времени процессов. Его значение (-1), установленное по умолчанию, для непрерывных процессов изменять не рекомендуется.

а) б)

Рисунок 4.17 - Блок «wm, M»: а) внешний вид, б) окно параметров


Осциллограф XY (рисунок 4.18) – графическое окно, отображающее зависимость одной переменной от другой. В данной схеме отображает механическую характеристику. Большим минусом этого блока является то, что в графическом окне нет сетки и нет возможности нанести надписи.

Настраиваемыми параметрами являются:

x-min, x-max, y-min, y-max – пределы осей по Х и У,

Sample time – смотри выше.

а) б) в)

Рисунок 4.18 - Блок XY: а) внешний вид, б) окно параметров, в) графическая область

Блок «Построение механической характеристики» (рисунок 4.19) является ссылкой на специально разработанную M-программу, в которой реализуется графическое построение механической характеристики. Большим удобством является то, что имеется сетка и можно наносить надписи осей и в графической области, а также редактирование полученных результатов.


а) б)

Рисунок 4.19 - Графическое окно для построения характеристик: а) внешний вид, б) графическая область


Информация о работе «Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB»
Раздел: Информатика, программирование
Количество знаков с пробелами: 114601
Количество таблиц: 5
Количество изображений: 73

Похожие работы

Скачать
85971
4
45

... тепловой схемы выполнялось для стационарного режима, так как коэффициенты теплоотдачи в переходном и стационарном режимах одинаковы. Полученные результаты используются в компьютерной лабораторной работе «Моделирование нагрева асинхронного двигателя в различных режимах работы». Лабораторная работа выполнена в программной среде MatLab 6.1, и в ее приложении Simulink 4. Данная работа позволяет ...

0 комментариев


Наверх