МАТЕМАТИЧЕСКИЕ МОДЕЛИ АСИНХРОННОЙ МАШИНЫ

Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB
Возможности, визуализация и графические средства Генераторный режим с отдачей энергии в сеть Асинхронные двигатели с улучшенными пусковыми свойствами Реакторный и автотрансформаторный пуск АД Регулирование скорости изменением числа пар полюсов МАТЕМАТИЧЕСКИЕ МОДЕЛИ АСИНХРОННОЙ МАШИНЫ Математическая модель асинхронной машины в осях, вращающихся с произвольной скоростью Преобразование уравнений асинхронной машины в неподвижной системе координат Структурная схема модели в неподвижной системе координат и её поблочное описание Результаты моделирования Результаты моделирования Объект исследования Снятие динамической характеристики при параметрах короткого замыкания Снятие искусственных механических характеристик Снятие естественной механической характеристики Определение затрат времени на разработку (ПМО) по стадиям проектирования Расчет затрат на требующееся машинное время Технические методы увеличения безопасности работы за компьютером
114601
знак
5
таблиц
73
изображения

3. МАТЕМАТИЧЕСКИЕ МОДЕЛИ АСИНХРОННОЙ МАШИНЫ

 

3.1 Математическое описание обобщённой машины

Обобщённая асинхронная машина содержит трёхфазную обмотку на роторе и статоре. Обмотки подключены к симметричным источникам напряжения. Математическое описание такой машины базируется на известных законах.

Уравнения равновесия ЭДС на обмотках статора и ротора базируется на втором законе Кирхгофа.

Для статора: Для ротора:

 (3.1)

В уравнениях (3.1) фигурируют мгновенные напряжения, токи и потокосцепления статора и ротора, а также активные сопротивления обмоток. Обычно обмотки выполняются симметричными, к поэтому RА=RВ=RС=Rs - активное сопротивление статорной обмотки, Rа=Rb=Rс=RR - активное сопротивление роторной обмотки.

Вторым используемым законом является закон Ампера, который связывает потокосцепления обмоток с токами, протекающими по обмоткам:

Для статора:

 (3.2 а)


Для ротора:

 (3.2 б)

Удивительно симметричные уравнения для определения потокосцеплений показывают, что потокосцепление каждой обмотки зависит от токов во всех обмотках; эти зависимости проявляются через взаимоиндукцию. В уравнениях (3.2) LАА, LBB, LCC, Laa, Lbb, Lcc, являются собственными индуктивностями соответствующих обмоток, все остальные - взаимоиндуктивностями между соответствующими обмотками.

Третьим законом, лежащим в основе анализа, является второй закон Ньютона - закон равновесия моментов на валу машины:

 (3.3)

где J (кг×м2) - момент инерции на валу машины, учитывающий инерционность как самой машины, так и приведенной к валу инерционности рабочего механизма и редуктора, - угловая скорость вала машины, (Н×м) - момент рабочего механизма, приведенный к валу, в общем случае он может быть функцией скорости и угла поворота, .

Наконец, четвертым и последним законом, лежащим в основа анализа машины, является закон, сформулированный Ленцем, как правило левой руки. Этот закон связывает векторные величины момента, потокосцепления и тока:


.(3.4)

Следует сразу подчеркнуть, что, несмотря на полное и строгое математическое описание, использование уравнений (3.1) - (3.4) для исследования машины встречает серьезные трудности. Из них основные:

- в уравнениях (3.3 и 3.4) фигурируют векторные величины, а в уравнениях (3.1 и 3.2) скалярные;

- количество взаимосвязанных уравнений равно 16, а количество коэффициентов - 44;

- коэффициенты взаимоиндукции между обмотками статора и ротора в уравнениях (3.2) являются функцией угла поворота ротора относительно статора, то есть уравнения (3.2) являются уравнениями с переменными коэффициентами;

- уравнение (3.4) является нелинейным, так как в нем перемножаются переменные.

3.2 Метод пространственного вектора

На пути упрощения математического описания асинхронной машины, да и вообще всех машин переменного тока, удивительно удачным и изящным оказался метод пространственного вектора, который позволил существенно упростить и сократить вышеприведенную систему уравнений; метод позволяет связать уравнения (3.1-3.4) в единую систему с векторными переменными состояния. Суть метода состоит в том, что мгновенные значения симметричных трехфазных переменных состояния (напряжения, токи, потокосцепления) можно математически преобразовать так, чтобы они были представлены одним пространственным вектором. Это математическое преобразование имеет вид (например, для тока статора):


(3.5)

где - векторы, учитывающие пространственное смещение обмоток, - симметричная трехфазная система токов статора.

Подставив в уравнения (3.5) значение мгновенных токов, найдем математическое описание пространственного вектора статорного тока:

(3.6)

На рис. 3.1 представлена геометрическая интерпретация пространственного вектора тока - это вектор на комплексной плоскости с модулем (длиной) Im, вращающийся с угловой скоростью w в положительном направлении. Проекции вектора  на фазные оси А, В, С определяют мгновенные токи в фазах. Аналогично пространственными векторами можно представить все напряжения, токи и потокосцепления, входящие в уравнения (3.1), (3.2).

Теперь можно переходить к упрощению уравнений.

Рисунок 3.1 - Пространственный вектор тока


Шаг первый. Для преобразования уравнений (3.1) в мгновенных значениях к уравнениям в пространственных векторах умножим их на выражения: первые уравнения на , вторые – на , третьи – на , - и сложим раздельно для статора и ротора. Тогда получим:

(3.7)

где LS, LR - собственные индуктивности статора и ротора, Lm(q) -взаимная индуктивность между статором и ротором. Таки образом, вместо двенадцати уравнений (3.1)-(3.2) получено лишь четыре уравнения (3.7).

Шаг второй. Переменные коэффициенты взаимной индукции уравнениях для потокосцеплений (3.7) являются результатом того, что уравнения равновесия ЭДС для статора записаны в неподвижно системе координат, связанной со статором, а уравнения равновесия ЭДС для ротора записаны во вращающейся системе координат, связанной с ротором. Метод пространственного вектора позволяет записать эти уравнения в единой системе координат, вращающейся произвольной скоростью wк. В этом случае уравнения (3.7) преобразуются к виду:

(3.8)


где w = р•wm, р - число пар полюсов в машине.

В уравнениях (3.8) все коэффициенты являются величинами постоянными, имеют четкий физический смысл и могут быть определены по паспортным данным двигателя, либо экспериментально.

Шаг третий. Этот шаг связан с определением момента. Момент в уравнении (3.4) является векторным произведением любой пары векторов. Из уравнения (3.8) следует, что таких пар может быть шесть . Часто в рассмотрение вводится потокосцепление взаимной индукции . В этом случае появляется ещё четыре возможности представления электромагнитного момента машины через следующие пары: . После выбора той или иной пары уравнение момента приобретает определенность, а количество уравнений в системе (3.8) сокращается до двух. Кроме того, в уравнениях (3.3) и (3.4) векторные величины момента и скорости могут быть заменены их модульными значениями. Это является следствием того, что пространственные векторы токов и потокосцеплений расположены и плоскости, перпендикулярной оси вращения, а векторы момента и угловой скорости совпадают с осью. В качестве примера запись уравнений момента через некоторые пары переменных состояния машины имеет вид:

(3.9)

В конечном виде уравнения обобщённой асинхронной машины имеют вид:


(3.10)


Информация о работе «Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB»
Раздел: Информатика, программирование
Количество знаков с пробелами: 114601
Количество таблиц: 5
Количество изображений: 73

Похожие работы

Скачать
85971
4
45

... тепловой схемы выполнялось для стационарного режима, так как коэффициенты теплоотдачи в переходном и стационарном режимах одинаковы. Полученные результаты используются в компьютерной лабораторной работе «Моделирование нагрева асинхронного двигателя в различных режимах работы». Лабораторная работа выполнена в программной среде MatLab 6.1, и в ее приложении Simulink 4. Данная работа позволяет ...

0 комментариев


Наверх