1. Среднее значение (интеграл по всей прямой) равен 0.

2. Функция быстро убывает при t ® ∞.

Обычно, функция-вейвлет обозначается буквой ψ.

В общем случае вейвлет преобразование функции f(t) выглядит так:

Непрерывное Вейвлет-преобразование(2)

где t – ось времени, x – момент времени, s – параметр, обратный частоте, a (*) – означает комплексно-сопряженное.

Непрерывное Вейвлет-преобразование

Рис 1. Примеры вейвлетов.

Главным элементом в вейвлет анализе является функция-вейвлет. Вообще говоря, вейвлетом является любая функция, отвечающая двум вышеуказанным условиям. Наибольшей популярностью пользуются два изображенных на рисунке 1 вейвлета:

Сверху изображен вейвлет “сомбреро” (Mexican Hat), названный так благодаря своему внешнему виду. На нижней части рисунка 1 изображен вейвлет Морле. График любого вейвлета выглядит примерно также, как и вейвлет Морле. Заметим, что вейвлет Морле – комплекснозначный, на рисунке изображены его вещественная и мнимая составляющие.

Итак, у нас имеется некоторая функция f(t), зависящая от времени. Результатом ее вейвлет-анализа будет некоторая функция W(x,s), которая зависит уже от двух переменных: от времени и от частоты (обратно пропорционально). Для каждой пары x и s рецепт вычисления вейвлет преобразования следующий:

Функция вейвлет растягивается в s раз по горизонтали и в 1/s раз по вертикали. Далее он сдвигается в точку x. Полученный вейвлет обозначается ψ(x,s). Производится усреднение в окрестности точки s при помощи ψ(x,s).

В результате “вырисовывается” вполне наглядная картина, иллюстрирующая частотно-временные характеристики сигнала. По оси абсцисс откладывается время, по оси ординат – частота (иногда размерность оси ординат выбирается так: log(1/s), где s-частота), а абсолютное значение вейвлет преобразования для конкретной пары x и s определяет цвет, которым данный результат будет отображен (чем в большей степени та или иная частота присутствует в сигнале в конкретный момент времени, тем темнее будет оттенок).

Непрерывное Вейвлет-преобразование

Рис 2. Вейвлет преобразование стационарного сигнала.

Данный рисунок показывает результаты вейвлет анализа для сигнала, представляющим из себя наложение двух синусоид различной частоты. Частотные характеристики данного сигнала не меняются во времени (сигнал стационарный), что хорошо видно на верхней части рисунка 2.

Непрерывное Вейвлет-преобразование

Рис 3. Сравнение методов анализа.

По рисунку 3 удобно сравнить результаты, которые дают преобразование Фурье и вейвлет преобразование. Исходный сигнал изображен на рис (3a). Как видно из рис (3c) преобразование Фурье дает информацию о том спектре частот, который присутствует в сигнале в промежутке времени от 0 до 1 сек., при этом нам неизвестно когда именно та или иная частота реально присутствовала в сигнале.

В то же время вейвлет преобразование (3b) дает исчерпывающую картину динамики изменения частотных характеристик во времени. Все это указывает на то, что вейвлет преобразование существенно более информативно по сравнению с преобразованием Фурье.

3.3.1 Методы вычисления непрерывного вейвлет-преобразования.

Существует два разных пути проведения вейвлет преобразования. Речь идет о расчетах во временной и частотной областях. При работе во временной области мы имеем дело с функциями, аргументами которых являются временные параметры, а в случае частотной – частотные. В частотной области используется механизм быстрого преобразования Фурье. [5c]

3.3.1.1 Во временной области

Прежде всего, нам необходимо определить материнский вейвлет. Допустим, мы выбрали некоторую функцию, удовлетворяющую необходимым условиям: ψ0(η), где η – безразмерный период.

Итак, нам дана временная серия X, со значениями xn, в моменты времени nÎ [0,N-1], где N – количество измерений. Каждая величина разделена по времени на постоянную величину dt. Получив основную формулу для материнского вейвлета, необходимо иметь возможность изменять размеры вейвлета. Для этого строится так называемый "масштабированный" вейвлет который будет иметь вид:

Непрерывное Вейвлет-преобразование (3)

s – параметр, обратный частоте.

Вычисление вейвлет преобразования является сверткой искомой временной серии с функцией-вейвлетом. Основная формула имеет вид :

Непрерывное Вейвлет-преобразование(4)

в данном случае (*) – означает комплексно-сопряженное.

Результатом расчета Wn(s) по формуле (4) будет комплексное число. В качестве конечного результата берется абсолютное значение полученного комплексного числа. [5a]

Блок – схема алгоритма:

Непрерывное Вейвлет-преобразование
Информация о работе «Непрерывное Вейвлет-преобразование»
Раздел: Математика
Количество знаков с пробелами: 20277
Количество таблиц: 0
Количество изображений: 10

Похожие работы

Скачать
13755
0
17

... сохранить относительную "плотность" расположения базисных функций по оси t при расширении или сжатии самой функции и при  (рис 3.6) Таким образом, базисные функции для частотно-временного анализа должны обладать следующими свойствами. Ограниченность, т.е. принадлежность L2 . Локализация. Базисные функции вейвлет - анализа, в отличие от преобразования Фурье, должны быть локализованы, т.е. ...

Скачать
30627
1
3

... непосредственно связаны с кратномасштабным анализом сигналов. Вейвлеты могут быть ортогональными, полуортогональными, биортогональными. Эти функции могут быть симметричными, асимметричными и несимметричными. Различают вейвлеты с компактной областью определения и не имеющие таковой. Некоторые функции имеют аналитическое выражение, другие – быстрый алгоритм вычисления связанного с ними вейвлет. ...

Скачать
31275
0
4

... плата ввода/вывода. Она необходима для подключения дополнительного оборудования, сбора информации с датчиков и обрабатывание ее. ПРИМЕНЕНИЕ. Системы "машинного зрения" применяются в следующих областях промышленности: ·           Автомобилестроение. ·           Электроннике. ·           Медицинской и фармацевтической. ·           Машиностроении. ·           Робототехнике. ·           ...

Скачать
44432
0
7

... 671 с 7.Короновский А.А., Непрерывный вейвлетный анализ и его приложения / А.А. Короновский, А.Е. Храмов — М. : Физматлит, 2003. — 176 с. </p> <h3>Методические указания</h3> <p> 1. С.Г. Антощук, А.О. Ніколенко Конспект Лекцій по курсу " Методи та засоби комп’ютерних інформаційних технологій" (Електронна версія) , 2005р.</p> <p>2. Методичні рекомендації до ...

0 комментариев


Наверх