Войти на сайт

или
Регистрация

Навигация


1.3 Особенности диалектов языка Лисп.

Диалекты Лиспа.

Маклисп.

Кроме символьной обработки Маклисп широко использовался в традиционных числовых вычислениях, применяемых , например, в обработке речи и изображений. Кроме исследователей ИИ и разработчиков алгебраической системы Максима на Маклисп оказали влияние и работы групп в МИТ по робототехнике, обработке речи и изображений. Исходя из требований, предъявляемых этими областями, в Маклисп были включены новые математические типы данных, такие как матричная и битовая обработка, а также широкий набор арифметических функций и средств. Быть может, важнейшая из них - возможность вычислений с неограниченной точностью, основывающаяся на созданных Кнутом (1969) алгоритмах.[2]

Маклисп был также первой Лисп-системой для которой создан хороший транслятор. Транслятор генерирует машинную программу в форме списков. Машинный код в виде списка легко обрабатывать и результирующий код для числовых задач получался эффективнее, чем у лучших фортрановских трансляторов.

Однако большую часть своих свойств Маклисп приобрел под влиянием стоящих перед исследователями ИИ проблем и накопленного опыта. Так в язык попали макросы чтения и таблицы чтения, позволяющие легко изменять и расширять структуру языка. Таким же образом из требований к программам и окружению возникли управляющие структуры, механизмы обработки прерываний и ошибок, а также использование управляющих символов, создан и интегрирован в систему экранный редактор, появились управление и взаимодействие параллельных процессов.

Основное внимание разработчики Маклиспа сосредоточили на эффективности. Этому служат указания, уточняющие способы обработки аргументов функций, а также экранирование от вмешательства программиста внутренних механизмов системы. За счет этих мер скорость работы Маклиспа в 1.5-2.5 раза выше, чем Интерлисп.[7]

Всего в Маклиспе используется около 400 функций. Самым большим недостатком системы является то, что ее никогда не документировали должным образом. Документация по этой системе разбросана по различным отчетам и руководствам. Маклисп был исследовательской системой и не предназначался для обучения и промышленного использования.[2]


муЛисп.

Интерпретатор Мулисп-85, разработанный для ПЭВМ серии IBM PC - удачный вариант реализации диалекта языка, включающий сравнительно ограниченный набор базовых функций (около 260) и оказавшийся в следствие этого более простым для изучения.

По сравнению с Коммон Лиспом диалект муЛисп не имеет такого широкого спектра доступных типов данных. В нем обеспечивается работа только с двумя типами числовой информации: целыми числами с любым основанием и рациональными. В диалекте отсутствуют средства работы со структурами, массивами, потоками и другими типами данных, указанная реализация языка Лисп имеет одно существенное преимущество - возможность пополнения базового набора функций путем подключения подпрограмм, написанных на языке ассемблера, что позволило повысить гибкость использования интерпретатора и эффективность прикладного программного обеспечения, создаваемого на его основе. Возможность такого пополнения отсутствует в большинстве других Лисп-систем, являющихся в этом смысле замкнутыми программными продуктами.

Среди других, вероятно, менее существенных, особенностей системы можно указать на реализацию специального механизма, позволяющего не заботиться о присваивании начальных значений литеральным атомам, получающих изначальное значение, равное «печатному» имени самого атома. Еще одной особенностью диалекта является возможность использования новой синтаксической конструкции «встроенный COND», существенно сокращающей тексты описаний функций пользователя и применяемой при записи тел функций и лямбда-выражений.[7]

Набор базовых функций муЛисп-интерпретатора включает ряд функций, обеспечивающих доступ практически ко всем функциям ОС ЭВМ через соответствующие прерывания. Наконец, указанная Лисп-сис-тема обеспечивается библиотеками Лисп-функций, дополняющими базовый набор функциями, имеющимися в диалектах Коммон Лисп и Интерлисп, что облегчает решение проблемы переносимости исходных текстов программных модулей, а также библиотеками, позволяющими выполнять манипулирование окнами на экране дисплея и обрабатывать управляющие воздействия через устройство типа «мышь». В комплект дополнительного программного обеспечения к интерпретатору входят интерактивный редактор текстов и простая обучающая система, написанные на диалекте языка муЛисп.[7]


Интерлисп.

Интерлисп появился в 1972 году из ББН-Лиспа. К 1978 году, когда вышло описание Интерлиспа, язык и система уже достаточно стабилизировались. Интерлисп уже не был языком в том же смысле, что и Маклисп или другие Лисп- системы или обычные традиционные системы программирования. Он представлял собой интегрированную среду программирования, в которую вошло множество различных вспомогательных средств. Интерлисп стал классическим примером хорошо развитых программных средств и средств в системах разделения времени.[2]

Этот диалект наряду с Коммон Лиспом один из наиболее распространенных, имеет достаточно развитый аппарат представления и манипулирования различными структурами данных, включая массивы. Среди общих особенностей данного варианта языка следует отметить использование для обозначения встроенных функций нетрадиционных имен, что порой затрудняет перенос готовых программных продуктов на другие диалекты и другие ЭВМ.[7]

В 1974 году Xerox начала разработку для Интерлиспа персональной лисповской рабочей станции под названием Alto. В реализации Лиспа для Alto впервые применили спроектированную специально для языка Лисп микропрограммируемую систему команд и мини-ЭВМ, способную с более высокой производительностью, чем универсальные ЭВМ, интерпретировать лисповские программы. Из этой машины Alto впоследствии развились Лисп-машины серии 1100 фирмы Xerox.

На основе версии Интерлиспа, работавшей в системе разделения времени, была создана совместимая снизу вверх версия Лиспа Интерлисп-де, используемая на Лисп-машинах серии 1100. В ее пользовательский интерфейс входили многооконное взаимодействие, графика с высокой разрешающей способностью, средства выбора из меню и мышь, а также ориентированный на использование экрана инспектор структур данных. Идея разделения экрана на многие независимые окна родилась в XLG. Алан Кэй уже в конце 60-х годов предложил такую идею подхода к компьютерам будущего и интерфейсу между человеком и машиной. Работа XLG привела к созданию в 70-х годах к разработке языка программирования Smolltalk и объектного программирования.

При создании Интерлиспа работа велась весьма тщательно. Система хорошо документирована и более новые версии совместимы с более ранними. Так преимуществом системы стало непрерывно пополняющееся большое количество переносимого программного обеспечения. С другой стороны, ограничение системы старым зафиксированным уже в конце 70-х годов диалектом сделало систему отчасти устаревшей и трудно расширяемой. В Интерлиспе среди прочего отсутствуют иерархические типы данных, объекты и замыкания. К тому же он базируется на динамическом связывании, тогда как новые версии Лиспа - статические. Однако из Интерлиспа берет начало новая версия - Коммон Лисп (1986). Для программирования на более высоком уровне в Интерлисп разработаны такие средства, в которых уже присутствовали объекты.

Интерлисп - столь замкнутая система, что доступна только ее оттранслированная версия в машинных кодах. В некоторых других системах, таких как, например Зеталисп, поддерживается версия Лиспа на исходном языке, которая доступна пользователю и может модифицироваться им. Развитие закрытых систем, похожих на Интерлисп, связано с ресурсами, имеющимся у создавших их лабораторий.

Интерлисп использует свыше 500 функций и большое количество системных имен и флажков, с помощью которых можно настроить и подогнать систему. Интерлисп реализован в системе разделения времени на многих больших ЭВМ.

В Интерлиспе основное внимание было уделено удобству системы для пользователя. Главный принцип разработчиков этого диалекта: все, что может иметь место в системе, должно естественно выражаться в терминах ее входного языка. Поэтому в Интерлисп программисту доступно все. Он может переопределять любые, в том числе и встроенные, функции; задавать и переопределять реакции на ошибки; работать непосредственно с уровня входного языка с внутренними структурами интерпретатора и т. д. При этом система поддерживает свою целостность и работоспособность.[7]


Франс Лисп.

Маклисп стал основой для многих новых диалектов языка Лисп, первым из которых был Франс Лисп. Эта версия Лиспа названа в честь известного венгерского композитора. Главным мотивом разработки Франс Лисп было желание получить современную Лисп-систему для новых машин VAX, чтобы на них можно было использовать систему Максима и другое лисповское программное обеспечение. Франс Лисп в довольно большой степени напоминает Маклисп, на котором первоначально была реализована Максима. Однако в диалекте отсутствуют некоторые устаревшие особенности Маклиспа и содержатся более новые системные идеи, заимствованные в то время в MIT Лисп-машин для Зеталиспа.

Новый диалект был реализован в университете в Беркли на ЭВМ VAX 780/11 на языке Си под управлением системы UNIX. Франс Лисп довольно широко используется как под управлением UNIX, так и под управлением VAX/VMS и в настоящее время является наиболее часто используемой версией Лиспа для систем разделения времени. Кроме того, он широко используется и на 32-битовых микро-ЭВМ и рабочих станциях, работающих под управлением UNIX.

Благодаря своей хорошей переносимости Франс Лисп получил распространение во многих университетах и исследовательских учреждениях. Сопровождение системы также разошлось в различных исправлениях системных ошибок, реализациях наиболее эффективных алгоритмов, а также в расширениях языка.


Зеталисп Лисп-машин.

Зеталисп также опирается на Маклисп. Он создан в 70-е годы в MIT в рамках проекта Лисп-машины, финансированного оборонным агентством. С самого начала его целью было изготовление коммерческого продукта. В 1979 году в связи с проектом родились два предприятия изготавливающие Лисп-машины: Symbolic Inc. и Lisp Machine Inc. (LMI). После этого в 80-е годы работа по развитию Зета Лиспа продолжалась в них независимо друг от друга на коммерческой основе. В какой-то мере системы отличаются друг от друга, но в части Зета Лиспа машины почти совместимы.[2]

Зета Лисп содержит следующие развитые механизмы и черты:

широкий выбор типов данных;

возможность объектно-ориентированного программирования в системе Flavor ;

современные управляющие структуры, динамические механизмы передачи управления сопрограммы и процессы;

гибкий механизм ключевых слов в лямбда-списке и многозначные функции;

ввод и вывод основывающийся на потоках;

пространства имен;

уже готовые функции, в том числе для сортировки, работы с линейными управлениями и матричные вычисления.

Выбор используемых в среде Зеталиспа инструментов и языков программирования зависит от поставщика, причем предлагаемый набор средств все время расширяется. Среди других языков предлагаются Фортран, Паскаль, Ада и Пролог. Для этих языков в среде Зеталиспа существуют особенно развитые программные окружения, и разработанные в них программы можно выполнять вместе с программами на Лиспе.

Готовые инструменты и прикладные разработки в большом количестве имеются для работы с ЭС, с естественным языком и речью, с реляционными базами данных, машинной графики и машинного проектирования.[2]


Коммон Лисп.

Этот диалект отличается наиболее широким представлением различных структур данных и включает около 800 встроенных функций. В этом диалекте обеспечиваются средства обработки основных классов числовой информации: целых, вещественных и комплексных. Символьные данные (литеры, литеральные атомы, строки) в Коммон Лиспе соответствуют основным возможностям других Лисп-систем. Дополнительно имеются средства обработки непечатных литер в символьных именах.

Одним из существенных преимуществ диалекта Коммон Лисп является наличие средств обработки массивов и структур, по своим возможностям не уступающих соответствующим средствам традиционных языков программирования (Фортран, Паскаль). Массивы в Коммон Лиспе могут иметь любое неотрицательное число измерений и индексируются последовательностью целых чисел. Тип компонентов массива может быть произвольным. Выделяется подкласс векторов - одномерных массивов, среди которых отдельно рассматриваются строки и битовые массивы.

Структуры Коммон Лиспа являются типом многокомпонентных записей, определяемых пользователем и имеющих именованные компоненты. Встроенное макроопределение DEFSTRUCT используется для определения структур новых типов. Для создания данных нового типа в виде структуры предусмотрены средства автоматической генерации набора функций, обеспечивающих средства манипулирования объектами этого класса.[1]

Удобным средством контроля доступа к различным переменным и функциям Лисп-программ в Коммон-Лиспе являются пакеты. Пакет - множество имен объектов, определенных и доступных в нем. Внутри пакета имена объектов подразделяются на внутренние и внешние. Первые предназначены для использования только внутри данного пакета, а вторые - для обеспечения связи с другими пакетами. Лисп-интерпретатор представляет широкий спектр средств манипулирования с пакетами. Как правило, Лисп-система имеет в своем составе четыре стандартных пакета: lisp (содержащий примитивы системы), user (умалчиваемый пакет прикладных программ и данных пользователя), keyword (содержащий ключевые слова всех встроенных функций и функций, определяемых пользователем), system (зарезервированный для системных целей).

Значительной переработке и расширению в Коммон Лиспе подверглись средства ввода-вывода и передачи информации. Для эффективной организации различных обменов с внешней средой введена концепция потоков, позволяющих осуществлять одно- и (или) двухстороннюю передачу информации. Для потоков предусмотрен набор базовых функций. В диалекте различают символьные и двоичные потоки. В первом случае передача осуществляется по байтам, а во втором - целыми числами. Кроме стандартных потоков пользователь имеет возможность создавать и использовать собственные потоки.[2]

В дополнение к указанным типам данных Коммон Лисп имеет ряд специфических классов объектов: хэш-таблицы, обеспечивающие эффективный способ доступа к данным по ключу; READ-таблицы, обеспечивающие управление обработкой информации поступающей из входного потока Лисп-системы, и некоторые другие. Такое множество имеющихся в диалекте различных типов данных, с одной стороны, развеивает существующее ошибочное представление о языке Лисп как о средстве обработки только символьной информации, а с другой - наличие мощных средств манипулирования типами данных существенно усложняет его.[7]

Этот диалект оставлен открыт: принципиальным является то, что осталась возможность в будущем, когда подойдет время и будет достигнуто согласие, добавить новые средства и методы. Эта идея как раз соответствует духу Лиспа.

Коммон Лисп не является готовой программной системой в том же смысле, что и Интерлисп, поскольку вопросы среды в основном оставлены открытыми. В стандарте не определено, каким должен быть редактор или другие вспомогательные средства. Сказано лишь в самом общем виде, каким образом они вызываются. Для того чтобы обеспечить быстрое развитие, среда и инструментальные средства еще не затронуты стандартизацией, и поэтому есть возможность создавать различные среды для различных целей. Коммон Лисп не определяет также и интерфейс пользователя.

В Коммон Лисп на современном этапе не включены даже средства объектного программирования, хотя и определены необходимые для этого базовые механизмы (замыкание и др.). Таким образом, объекты можно реализовать на Лиспе. Но уже ведется работа по стандартизации средств и форм объектного программирования.

В Коммон Лиспе много внимания уделено практическим требованиям, и, вероятно, поэтому не все его черты эстетичны и чисты. Несомненно, что и другие Лисп-системы будут использоваться в дальнейшем, и их также необходимо развивать.

Коммон Лисп предназначен не только для работы со списками или для символьной обработки, он является универсальным языком программирования, включающим в себя особенно хорошие средства для численных вычислений, управления данными и связи. На Коммон Лиспе можно с одинаковым успехом писать программы в традиционных операторном, процедурном, фразовом стиле, а также и в свойственных Лиспу стилях. В языке содержатся предпосылки для использования различных способов и стилей программирования, таких как операторное, функциональное, макропрограммирование, программирование, управляемое данными, и продукционное программирование, а также средства, необходимые для логического и объектного программирования и реализации других средств более высокого уровня.[1]

Можно смело сказать, что Коммон Лисп содержит почти все, что на сегодняшний день могут дать другие известные языки программирования, и, кроме того, он предусматривает средства для расширения языка.


Лисп-машины.

С наступлением 70-х годов большие системы ИИ и алгебраические системы натолкнулись на ограничения памяти и эффективности, существующие и на больших универсальных ЭВМ. Восемнадцатибитовое поле адреса широко используемых машин PDP-10/20 стало серьезным ограничением, к тому же исследователи ИИ не могли работать в системе разделения времени в дневное время из-за большой нагрузки на машины. Из этих проблем родилась идея об отдельной Лисп-машине и о маневре, который известен под названием «бегство из разделения времени». На это направление повлияло также и быстрое развитие микро-электронники в 70-х годах, сделавшее возможным проектирование и производство ориентированных на язык процессоров и персональных ЭВМ.

Первый отчет, связанный с Лисп-машинами, появился в серии изданий лаборатории ИИ MIT в 1974 году, а интегральная схема LSI была изготовлена в 1978 году. Первые промышленные Лисп-машины появились на рынке несколько лет спустя.

Часть идей, касающихся Лисп-машин, зародилась в Исследовательском центре Palo Alto фирмы Xerox и была результатом пионерских разработок в области обработки данных на персональных ЭВМ и экранно-ориентированных человеко-машинных интерфейсов. Это были объектно-ориентированный подход, а также специальные интегрированные в среду средства и методы программирования, созданные фирмами Xerox и BBN в ходе работы над Интерлиспом.[2]

Целью проектирования Лисп-машин была разработка их в виде персональных ЭВМ, которые можно было бы использовать не только для профессиональных исследований в области ИИ, но и для различных промышленных и коммерческих приложений. Разработке и их распространению помешала необходимость переноса программного обеспечения большого объема из дорогой среды больших машин.

По производительности оборудования Лисп-машины очень эффективны, кроме того, они имеют большой объем основной памяти. Их аппаратура спроектирована специально для вычислений на Лиспе. С точки зрения эффективности одной из наиболее важных особенностей является проверка типов на уровне аппаратуры, используемая в системах, происходящих из MIT.

Однако наиболее существенным преимуществом такой аппаратуры является возможность использования на Лисп-машине интегрированной программной среды. В ней наряду с самим Лиспом содержатся разнообразные программные средства. Программное обеспечение использует тысячи функций. Во многих системах помимо Лиспа доступны и другие языки (Паскаль, Ада, Си, Пролог и др.). Так, в систему можно добавить реализованные ранее на других языках части или сделать традиционное программирование более эффективным с помощью разнообразнейших средств, имеющихся на Лисп-машине.

Создание Лисп-машин дало новый толчок развитию Лиспа. Кроме высокого быстродействия (первая же Лисп-машина работала в несколько раз быстрее, чем Маклисп) и огромной виртуальной списковой памяти, достоинством Лисп-машин является и то, что для них это единственный язык программирования. На нем написаны все системные программы, начиная с ОС и кончая всевозможными препроцессорами, и программы пользователя. Такая однородность значительно упрощает как разработку самих системных компонентов, так и взаимодействие с ними. По сути дела, на Лисп-машинах стирается грань между системным и прикладным программным обеспечением. В настоящее время Лисп-машины выпускаются рядом фирм США, Японии и Западной Европы. В бывших социалистических странах также имеются положительные примеры разработки таких машин.[7]


Выводы.

Современные диалекты языка Лисп можно рассматривать как мощные интерактивные системы программирования. Это объясняется двумя причинами. Во-первых, сам язык Лисп претерпевает серьезные изменения - развиваются средства языка, предназначенные для обработки нетрадиционных для Лиспа типов данных: массивов, векторов, матриц; появляются некоторые средства управления памятью (пакеты), отсутствующие в Лиспе. Серьезные изменения претерпевают и управляющие структуры. Появились несвойственные природе языка Лисп функции, заимствованные из Фортрана, Алгола, Паскаля, Си: Do, Loop, Goto , Case и прочие, позволяющие пользователю, незнакомому с принципами функциональных языков, легко переходить на Лисп. Качество программ снижается, зато возрастает популярность языка. Во-вторых, если на первом этапе развития Лисп-системам была присуща небольшая скорость обработки данных и серьезные ограничения на емкость используемой оперативной памяти, то современные Лисп-системы уже могут соперничать по этим параметрам с такими языками, как Си, Паскаль и др. Использование Лисп-машин вообще практически снимает ограничения памяти и быстродействия.

Для ПЭВМ ограничения по памяти и быстродействию все еще остаются существенными. Однако положение не безнадежно. Развитие Лисп-систем для ПЭВМ идет сегодня по трем различным направлениям. Первое связано с увеличением емкости памяти, которая может использоваться Лисп-системой. С этой целью ряд компаний разработал версии языка Golden Common Lisp, использующие расширения оперативной памяти и виртуальную память. Второе направление связанно с повышением быстродействия Лисп-систем. Третье направление состоит в разработке эффективных компиляторов программ с языка Лисп в традиционные языки (чаще всего в язык Си).

Положительным нововведением в современные диалекты языка можно считать псевдоассемблерные команды, которые позволяют оперировать основными регистрами машины и организовывать прерывания на уровне DOS и BIOS. Кроме того, многие Лисп-системы имеют хорошие интерфейсы с другими языками (Фортран, Паскаль, Ассемблер, Си), что позволяет повысить эффективность прикладных Лисп-программ.

Если же говорить о глобальной тенденции развития самой идеологии языка Лисп, то очевидно, что она связана с созданием объектно-ориентированных версий языка как наиболее пригодных для реализации систем ИИ.

Анализ существующих языков обработки символьной информации, использование их для реализации интеллектуальных систем, а также сравнение тенденций развития этих языков позволяют сделать несколько замечаний.

Можно предположить, что Лисп еще значительное время будет оставаться основным языком для реализации интеллектуальных систем.

Уже в ближайшее время можно ожидать появления языков, вобравших в себя лучшие черты Лиспа и др. языков программирования ИИ.

Наблюдается явная тенденция к созданию параллельных версий языков для программирования задач ИИ. Языки типа Лисп, Пролог, Рефал (а также всевозможные модификации и «смеси» этих и/или других языков символьной обработки) будут все больше уступать свои позиции на уровне инженеров по знаниям специальным языкам представления знаний, оставаясь инструментарием системных программистов.

На основании анализа сравнительных характеристик для изучения языка Лисп в курсе лабораторных работ по предмету «Системы искуственного интеллекта» был выбран диалект муЛисп. Выбор этого диалекта основан на следующих его особенностях:

Простота в изучении (благодаря небольшому набору базовых функций).

Близость к стандарту языка.

Возможность пополнения базового набора функций.

Дополнительные библиотеки Лисп-функций, расширяющие базовый набор функций, имеющимися в диалектах Коммон Лисп и Интерлисп, а также библиотеками, позволяющими выполнять манипулирование окнами на экране дисплея и работать с устройством «мышь».

Дополнительное программное обеспечение к интерпретатору: интерактивный редактор текстов и простая обучающая система.


Реферат.


Об’єм дипломної роботі ________________стор.

Кількість ілюстрацій _______________________ 4

Вікористано літературних джерел ___________ 12


Ключові слова: штучний інтелект, інтегроване середовище, оператор, функція, функціонал, макрос, замикання, рекурсія.

Метою цієї дипломноі роботи є ознаємлення з основами ограмування на Ліспі, вівчення особливостей середовища MuLisp та dlisp, розробка комплексу лабораторних робіт з дисципліни «Системи штучного інтелекту» для студентів спеціальності «Комп’ютерні та інтелектуальні системи та мережі», розширення бібліотеки функцій інтегрованного середовища dlisp, розробка завдань та контрольных питань до лабораторних робіт.


Содержание.


Введение __________________________________________________

1 Литературный обзор _______________________________________

1.1 Краткая история развития искусственного интеллекта ____

1.2 Языки программирования искусственного интеллекта _____ 1.2.1 Классификация языков и стилей программирова-

ния ____________________________________________

1.2.2 Сравнительные характеристики языков искус-

ственного интеллекта____________________________

1.2.2.1 Языки обработки символьной инфор-

мации ____________________________________

1.2.2.2 Языки программирования интеллектуаль-

ных решателей ____________________________

1.3 Особенности Лисп-систем ______________________________ 1.3.1 Диалекты Лиспа ____________________________

1.3.2 Лисп-машины ______________________________

1.4 Выводы ___________________________________________ 1.5 Постановка задачи _________________________________

2 Теоретическая часть ______________________________________

2.1 Основные особенности языка Лисп ___________________

2.2 Понятия языка Лисп ________________________________ 2.2.1 Атомы и списки _____________________________ 2.2.2 Внутреннее представление списка _____________ 2.2.3 Написание программы на Лиспе _______________ 2.2.4 Определение функций _______________________ 2.2.5 Рекурсия и итерация _________________________ 2.2.6 Функции интерпретации выражений ____________ 2.2.7 Макросредства _____________________________ 2.2.8 Функции ввода и вывода _____________________

2.3 Знания в искусственном интеллекте ___________________ 2.3.1 Требования к знаниям _______________________ 2.3.2 Основные типы знаний _______________________

2.3.3 Методы представления знаний ________________

3 Практическая часть ________________________________________

3.1 Лабораторная работа №1 ____________________________

3.2 Лабораторная работа №2 ____________________________ 3.3 Лабораторная работа №3 ____________________________ 3.4 Лабораторная работа №4 ____________________________ 3.5 Лабораторная работа №5 ____________________________

3.6 Лабораторная работа №6 ____________________________

4 Вопросы инженерной психологии, применительно к отработке

программ __________________________________________________

Заключение ________________________________________________

Список литературы __________________________________________


2. Теоретическая часть.

2.1 Основные особенности языка Лисп.


От других языков программирования Лисп отличается следующими свойствами:

1. одинаковая форма данных и программ;

2. хранение данных, не зависящее от места;

3. автоматическое и динамическое управление памятью;

4. функциональная направленность;

5. Лисп - бестиповый язык;

6. интерпретирующий и компилирующий режимы работы;

7. пошаговое программирование;

8. единый системный и прикладной язык программирования.


Теперь рассмотрим эти свойства более подробно.


Одинаковая форма данных и программ.

В Лиспе формы представления программы и обрабатываемых ею данных одинаковы. И то и другое представляется списочной структурой, имеющей одинаковую форму. Таким образом программы могут обрабатывать и преобразовывать другие программы и даже самих себя. В процессе трансляции можно введенное и сформированное в результате вычислений выражение данных проинтерпретировать в качестве программы и непосредственно выполнить. Это свойство обладает не только теоретическим, но и большим практическим значением.

Универсальный единообразный и простой лисповский синтаксис списка не зависит от применения, и с его помощью легко определять новые формы записи, представления и абстракции. Даже сама структура языка является, таким образом, расширяемой и может быть заново определена. В то же время достаточно просто написание интерпретаторов, компиляторов, редакторов и других средств. К Лиспу необходимо подходить как к языку, с помощью которого реализуются специализированные языки, ориентированные на приложение, и создается окружение более высокого уровня. Присущая Лиспу расширяемость не встречается в традиционных замкнутых языках программирования.


Хранение данных не зависящее от места.

Списки, представляющие программы и данные, состоят из списочных ячеек, расположение и порядок которых в памяти не существенны. Структура списка определяется логически на основе имен символов и указателей. Добавление новых элементов в список или удаление из списка может производиться без переноса списка в другие ячейки памяти. Резервирование о освобождение могут в зависимости от потребности осуществляться динамически, ячейка за ячейкой.


Автоматическое и динамическое управление памятью.

Пользователь не должен заботиться об учете памяти. Система резервирует и освобождает память автоматически в соответствии с потребностью. Когда память кончается, запускается специальный мусорщик. Мусорщик перебирает все ячейки и собирает являющиеся мусором ячейки в список свободной памяти для того, чтобы их можно было использовать заново. Cреда Лиспа постоянно содержится в порядке В современных Лисп-системах выполнение операции сборки мусора занимает от одной до нескольких секунд. В задачах большого объема сборщик мусора запускается весьма часто, что резко ухудшает временные характеристики прикладных программ. Во многих системах мусор не образуется, поскольку он сразу же учитывается. Управление памятью просто и не зависит от физического расположения, поскольку свободная память логически состоит из цепочки списочных ячеек.

В первую очередь данные обрабатываются в оперативной и виртуальной памяти, которая может быть довольно большой. Файлы используются в основном для хранения программ и данных в промежутках между сеансами

.

Функциональная направленность Лиспа.

Функциональное программирование, используемое в Лиспе, основывается на том, что в результате каждого действия возникает значение. Значения становятся элементами следующих действий, и конечный результат всей задачи выдается пользователю. Обойти это можно только при помощи специальной функции QUOTE. То обстоятельство, что результатом вычислений могут быть новые функции, является важным преимуществом Лиспа.


Лисп - бестиповый язык.

В Лиспе имена символов, переменных, списков, функций и других объектов не закреплены предварительно за какими- ни будь типами данных. Типы в общем не связаны с именами объектов данных, а сопровождают сами объекты. Переменные в различные моменты времени могут представлять различные объекты. В этом смысле Лисп является бестиповым языком.

Динамическая, осуществляемая лишь в процессе исполнения, проверка типа и позднее связывание допускают разностороннее использование символов и гибкую модификацию программ. Функции можно определять практически независимо от типов данных, к которым они применяются.

Но указанная бестиповость не означает, что в Лиспе нет данных различных типов. Наоборот набор типов данных наиболее развитых Лисп-систем очень разнообразен.

Одним из общих принципов развития Лисп-систем было свободное включение в язык новых возможностей и структур, если считалось, что они найдут более широкое применение. Это было возможно в связи с естественной расширяемостью языка.

Платой за динамические типы являются действия по проверке типа на этапе исполнения. В более новых Лисп-системах (Коммон Лисп) возможно факультативное определение типов. В этом случае транслятор может использовать эту информацию для оптимизации кода. В Лисп-машинах проверка осуществляется на уровне аппаратуры.


Интерпретирующий и компилирующий режимы работы.

Лисп в первую очередь интерпретируемый язык. Программы не нужно транслировать, и их можно исправлять в процессе исполнения. Если какой-то участок программы отлажен и не требует изменений то его можно оттранслировать, тогда она выполняется быстрее. В одной и той же программе могут быть транслированные и интерпретированные функции. Транслирование по частям экономит усилия программиста и время вычислительной машины.

Однако компилирующий режим предусмотрен далеко не во всех Лисп-системах, его использование накладывает ряд дополнительных ограничений на технику программирования.


Пошаговое программирование.

Программирование и тестирование программы осуществляется функция за функцией, которые последовательно определяются и тестируются. Написание, тестирование и исправление программы осуществляются внутри Лисп-системы без промежуточного использования ОС.

Вспомогательные средства, такие например как, редактор, трассировщик, транслятор и другие образуют общую интегрированную среду, язык которой нельзя отличить от системных средств. Отдельные средства по своему принципу являются прозрачными, чтобы их могли использовать другие средства. Работа может производиться часто на различных уровнях или в различных рабочих окнах. Такой способ работы особенно хорошо подходит для исследовательского программирования и быстрого построения прототипов.

Единый системный и прикладной языки программирования.

Лисп является одновременно как языком прикладного так и системного программирования. Он напоминает машинный язык тем, что как данные, так и программы представлены в одинаковой форме. Язык превосходно подходит для написания интерпретаторов и трансляторов как для него самого, так и для других языков. Наиболее короткий интерпретатор Пролога, написанный на Лиспе занимает несколько десятков строк.

Традиционно Лисп-системы в основной своей части написаны на Лиспе. Лисп можно в хорошем смысле считать языком машинного и системного программирования высокого уровня. И это особенно хорошо для Лисп-машин, которые вплоть до уровня аппаратуры спроектированы для Лиспа и системное программное обеспечение которых написано на Лиспе.



Информация о работе «ЛИСП»
Раздел: Информатика, программирование
Количество знаков с пробелами: 170298
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
14593
2
12

... цифр с требуемым числом разрядов и, таким образом, запомнить любое самое большое число данной разрядности. Целью данной курсовой работы является ЛИСП-реализация конечных автоматов.1. Постановка задачи Конечный автомат – автомат, проверяющий допустимость слова на ленте, и возвращающий True / False (в данном случае Correct / Incorrect). Конечный автомат может двигаться по ленте только в одном ...

Скачать
16057
6
13

... При работе пользователя с базой данных над ее содержимым выполняются следующие основные операции: выбор, добавление, модификация (замена) и удаление данных. Целью данной курсовой работы является ЛИСП – реализация основных операций над базами данных. 1 Постановка задачи Требуется разработать программу, реализующую основные операции над базами данных: выбор, добавление, модификация и удаление ...

Скачать
14282
0
14

... новых рынков, биржевой игре, оценки политических рейтингов, выборе оптимальной ценовой стратегии и т.п. Появились и коммерческие системы массового применения. Целью данной курсовой работы является ЛИСП – реализация основных операций над нечеткими множествами. 1.Постановка задачи Требуется реализовать основные операции над нечеткими множествами: 1)   содержание; 2)   равенство; 3)   ...

Скачать
11806
0
10

... метода Ньютона на случай мнимых корней полиномов степени выше второй и комплексных начальных приближений. Эта работа открыла путь к изучению теории фракталов. Целью данной курсовой работы является Лисп – реализация нахождения корней уравнения методом Ньютона. 1. Постановка задачи Дано уравнение: . Требуется решить это уравнение, точнее, найти один из его корней (предполагается, что ...

0 комментариев


Наверх