10. Теорема о строении простого алгебраического расширения

 

10. Понятие минимального многочлена.

Пусть a - алгебраическое число над полем k, т.е. корень ненулевого многочлена с коэффициентами из поля k.

Определение. Нормированный многочлен m(a, k, x) над полем k называется минимальным многочленом числа a, если выполнены условия:

а) m(x) - неприводим над полем k, т.е. не разлагается в произведение многочленов положительной степени с коэффициентами из k;

б) m(a) = 0, т.е. a - корень многочлена m(x).

Примеры.

a

i

- 1

i +

m(a, Q, x)

x2 + 1

x2 - 5

x2 + 2x - 1

x4 - 4x2 + 16

20. Основные свойства минимальных многочленов.

1. Если f(x) Î k[x] и f(a) = 0, то f(x) делится на минимальный многочлен m(х) числа a.

Доказательство. В самом деле, предположив, что f не делится на m, запишем

f = mg + r, deg r < deg m

на основании теоремы о делении с остатком. Откуда r(a)=0. Поскольку многочлены r и m взаимно просты, то у них не может быть общих корней - противоречие.

2. Допустим, что a - алгебраическое число, а g(x) - нормированный многочлен наименьшей положительной степени такой, что g(x) Î k[x] и g(a) = 0. Тогда g(x) - минимальный многочлен числа a.

Доказательство немедленно вытекает из свойства 1.

3. Минимальный многочлен алгебраического числа a над данным полем определен однозначно.

Для доказательства достаточно применить свойство 2.

Определение. Степень минимального многочлена числа a называется степенью числа a; обозначение degk a.

4. a Î k Û deg k a = 1.

Доказательство немедленно получается из определений.

5. Если a - алгебраическое число степени n, то 1, a, a2, ..., an-1 линейно независимы над полем k, т.е. ("c0, c1, ..., cn-1Îk) c0 + c1a + ... + cn-1an-1 = 0 возможно только в случае c0 = c1 = . . . = cn-1 = 0.

Доказательство. Действительно, если указанные степени числа a линейно зависимы, то это число является корнем некоторого многочлена над k, степени меньшей чем m.

6. Пусть a - алгебраическое число, f(x) Î k[x] и f(a) ¹ 0. Тогда дробь  представима в виде = g(a) для некоторого g(x) Î k[x].

Доказательство. В самом деле, многочлены f и m взаимно просты (иначе f делился бы на m), значит, по теореме о линейном представлении НОД: для некоторых многочленов g и h над k верно равнство

fg + mh = 1.

Откуда f(a) g(a) = 1, что и требовалось.

30. Строение простых алгебраических расширений.

Определение. Пусть k - подполе в L; a Î L. Наименьшее подполе в L, содержащее число a и подполе k, обозначаемое k(a), называется простым расширением поля k (говорят также, что k(a) получено присоединением к полю k числа a).

Из приведенных свойств легко вывести теорему.

Теорема (о строении простого алгебраического расширения).

Для любого алгебраического числа a над полем k линейное пространство k(a) обладает базисом из элементов вида

1, a, a2, . . . , an-1, где n = degk a.

Доказательство. Легко понять, что k(a) состоит из дробей f(a)/g(a), где f(x), g(x) - многочлены над полем k и g(a) ¹ 0. Обозначим через k[a] - кольцо значений многочленов в точке a, т.е. k[a] = { f(a)½f(x)Î k[x]}.

Из свойства 6 вытекает равенство k(a) = k[a]. Из теоремы о делении с остатком следует, что значение произвольного многочлена над полем k в точке a является линейной комбинацией над полем k указанных в теореме степеней элемента a. Наконец, из свойства 5 следует линейная независимочть над полем k этих степеней. ÿ

40. Освобождение от иррациональности в знаменателе дроби.

Разберем различные способы решения задачи об освобождении от иррациональности в знаменателе дроби. Принципиальная возможность ее решения вытекает из теоремы о строении простого алгебраического расширения.

Пример 1. Освободиться от иррациональности в знаменателе дроби:

.

Решение. Обозначим через c число , и воспользуемся известной формулой суммы членов геометрической прогрессии:

1+ c + c2+ c3+ c4 = (c5 - 1)/(c- 1) = 1/(c- 1),

следовательно, .

Пример 2. Освободиться от иррациональности в знаменателе дроби:

.

Решение. Обозначим через c число , и запишем сначала дробь

в виде суммы простейших:

.

Теперь, используя схему Горнера, каждую из указанных дробей можно заменить на многочлен относительно c. Сначала разделим c5 - 2 на c + 1:

1 0 0 0 0 -2
-1 1 -1 1 -1 1 -3

 

следовательно,

 = c4 - c3 + c2 - c + 1.

Теперь разделим c5 - 2 на c + 2:

1 0 0 0 0 -2
-2 1 -2 4 -8 16 -34

 

следовательно,

= c4 - 2c3 + 4c2 - 8c + 16.

Тогда получаем

= 34(c4 - c3 + c2 - c + 1) - 3(c4 - 2c3 + 4c2 - 8c + 16) =

 = 31c4 - 40c3 + 22c2 - 10c - 14,

т.е.  .

Пример 3. Освободиться от иррациональности в знаменателе дроби:

.

Решение. Обозначим через c число . Найдем линейное представление НОД многочленов f(x) = x3 - 2 и g(x) = 1 + 2x - x2:

f(x) = - g(x)×(x + 2) + r(x), где r(x) = 5x

-5g(x) = r(x)×(x - 2) - 5.

Из этих равенств, получаем линейное представление НОД f(x) и g(x):

f(x)×(x - 2) + g(x)×(x2 + 1) = 5.

Подставляя в последнее равенство вместо x число c, получим

= c2 + 1,

следовательно, =.

Пример 4. Освободиться от иррациональности в знаменателе дроби:

.

Решение. Обозначим через c число и применим метод неопределенных коэффициентов. По теореме о строении простого алгебраического расширения существуют рациональные числа x, y, z такие, что

 = xc2 + yc + z или 89 = (c2 + 16c - 11)(xc2 + yc + z).

Раскрывая скобки и используя равенство c3 = 2, получаем:

89 = (32x + 2y - 11z) + (2x - 11y + 16z)c + (-11x + 16y + z)c2.

Так как числа 1, c, c2 линейно независимы над Q имеем

32x + 2y - 11z = 89, 2x - 11y + 16z = 0,

-11x + 16y + z = 0.

Решением последней системы является набор чисел (3, 2, 1). Значит, получаем ответ: .


Информация о работе «Программа государственного экзамена по математике для студентов математического факультета Московского городского педагогического университета»
Раздел: Математика
Количество знаков с пробелами: 38950
Количество таблиц: 13
Количество изображений: 4

Похожие работы

Скачать
106762
1
2

... учебного процесса методической подготовки будущего учителя. Основное содержание исследования отражено в следующих публикациях автора:   I. Монографии: 1. Абдуразаков М.М. Совершенствования содержания подготовки будущего учителя информатики в условиях информатизации образования. –Махачкала: ДГПУ, 2006. –190 с. 12 п.л. 2. Гаджиев Г.М., Абдуразаков М.М. Технология преподавания информатики. – ...

Скачать
47400
0
0

... профиля и специализации. На факультетах общественных наук предметы, входившие в минимум, изучались в расширенном объеме[4]. 2. Положение русского студенчества в конце XIX начале XX века 2.1 Образ русского студента в конце XIX начале XX века В отличие от закрытых учебных заведений, в которых учились в основном дворяне, значительное число учащихся в университетах были людьми незнатными ...

Скачать
899509
4
0

... и устойчивых требований, которые определяют характер и особенности организации коррекционно-образовательного процесса и управления познавательной деятельностью лиц с особыми образовательными потребностями. Специальная педагогика опирается на соответствующие обще- педагогические принципы организации образования и управления познавательной деятельностью, однако их реализация в системе специального ...

Скачать
52769
0
0

... покровителей, сделавших особый вклад в развитие культуры, в Европе называют медичи. Конец девятнадцатого века в России был ознаменован необычайным подъёмом культуры. В связи с этим появились в стране и те, кто этот подъём всячески поддерживал, в том числе и материально. Эти люди были в основном богатыми купцами и промышленниками, которые чувствовали необычайный прогресс в развитии культуры ...

0 комментариев


Наверх