Группы геометрических преобразований. Группы вращений, подобий, гомотетий с заданным общим центром, параллельных переносов

38950
знаков
13
таблиц
4
изображения

4. Группы геометрических преобразований. Группы вращений, подобий, гомотетий с заданным общим центром, параллельных переносов.

5. Матричные группы. Укажем на две важнейшие матричные группы:

GLn(R) - полная линейная группа (группа обратимых матриц),

SLn(R) - специальная линейная группа

(группа матриц с единичным определителем),

30. Арифметика группы: обратные элементы, степени с целым показателем.

При описании таблицы Кэли группы симметрий правильного треугольника мы использовали так называемые арифметические свойства элементов группы. Отметим важнейшие из них в следующей теореме.

Теорема. Пусть (G,×) - группа. Тогда для ее элементов справедливы равенства:

(а) (xy)(zt) = x(y(zt) = ((xy)z)t;

(б) (xy)-1 = y-1x-1;

(в) (xp)q = xpq; xpxq = xp+q для любых целых p, q.

Доказательство. Проверим только пункт (б). Имеем:

(xy)(y-1x-1) = x(yy-1)x-1 = x(1)x-1 = 1,

(y-1x-1)(xy) = y-1(x-1x)y = y-1(1)y = 1;

откуда и получаем требуемое утверждение. ÿ

40. Решение в группах линейных уравнений. В качестве применения простейших свойств приведем следующий простой результат.

Теорема. В произвольной мультипликативной группе G однозначно разрешимо каждое из уравнений:

ax = b, ya = b, где a, b - фиксированные элементы группы.

Доказательство. Допустим, что элемент g удовлетворяет равенству ag = b. Тогда умножая обе части равенства слева на элемент обратный к g, получим

a-1(ag) = a-1b, откуда находим g = a-1b. Легко проверить, что элемент a-1b является решением уравнения ax = b, т.е. справедливо равенство a(a-1b) = b.

Аналогично доказывается разрешимость второго уравнения. ÿ

Примеры. 1. Решить уравнение (12)x = (13) в группе подстановок S3.

Имеем: x = (12)(13) = (123).

2. Решить уравнение rx = a в группе симметрий правильного треугольника.

Имеем: x = r -1a = g, поскольку sa является отражением и

C(sa) = (Cs)a = Ba = C.

3. Решить уравнение X = в группе GL2(R).

Имеем:

X = ==.


2. Кольца и поля; примеры и простейшие свойства элементов

 

10. Определение кольца и поля.

Определение. Непустое множество A, на котором заданы операции сложения и умножения, называется кольцом, если выполнены следующие два условия:

а) (A, +) - абелева группа;

б) умножение дистрибутивно относительно сложения, т.е. для любых элементов x, y, z из A выполнены равенства: (x + y)z = xz + yz; x(y + z) = xy + xz.

Определение. Кольцо называется коммутативным, если операция умножения в нем коммутативна; кольцо называется ассоциативным, если операция умножения в нем ассоциативна. Кольцо называется кольцом с единицей, если оно обладает нейтральным элементом относительно умножения.

Определение. Пусть A - ассоциативное кольцо с единицей 1. Элемент aÎA называется обратимым, если существует элемент bÎA такой, что ab = ba = 1.

Легко проверить, что элемент b, о котором идет речь находится однозначно, поэтому он обозначается a-1 и называется элементом обратным к a.

Важнейшим типом колец являются поля.

Определение. Ассоциативно-коммутативное кольцо с единицей называется полем, если в нем всякий ненулевой элемент обратим.

20. Примеры колец: числовые кольца, кольца многочленов, кольца последовательностей и функций, кольца матриц, кольца вычетов.

Если группы появляются, прежде всего, как группы обратимых отображений, то возникновение понятия кольца связано с изучением важнейших числовых систем и многочленов.

1. Числовые кольца (кольца, элементы которых являются комплексными числами):

а) (классические числовые кольца) кольцо целых чисел Z, кольцо рациональных чисел Q, кольцо действительных чисел R, кольцо комплексных чисел C.

б) кольцо Z[i] целых гауссовых чисел вида a + bi, где a, b - целые числа;

г) кольцо Z[] действительных чисел вида a + b с целыми a, b.

2. Кольца многочленов R[x], Q[x], Z[x], C[x] от одной переменной x с действительными, рациональными, целыми и комплексными коэффициентами.

3. Кольца последовательностей и функций. Среди этих колец выделим особо:

а) кольцо последовательностей действительных чисел с обычными операциями сложения и умножения последовательностей;

б) кольцо ограниченных последовательностей действительных чисел;

в) кольцо фундаментальных последовательностей;

г) кольцо непрерывных действительно-значных функций на отрезке [0 , 1].

4. Кольца матриц. Среди разнообразных матричных колец выделим следующие:

а) полное матричное кольцо Mn(A) над кольцом A или кольцо квадратных матриц порядка n с элементами из кольца A, в качестве кольца коэффициентов A можно рассматривать, в частности, любое числовое кольцо;

б) кольцо Dn(A) диагональных матриц, т.е. матриц, у которых вне главной диагонали находятся только нулевые элементы;

в) кольцо TNn(A) нильтреугольных матриц, т.е. треугольных матриц с нулями на главной диагонали.

Кольца Mn и TNn являются некоммутативными, в кольце TNn нет единицы.

30. Примеры полей.

1. Числовые поля. Q, R, C, Q[i], Q[] .

2. Поля дробно-рациональных функций: Q(x), R(x), C(x). Так, элементами множества R(x) являются всевозможные функции вида , где f(x), g(x) - многочлены с действительными коэффициентами, причем многочлен g(x) ненулевой. Операции сложения и умножения дробей обычные.

3. Поле вычетов Zp по простому модулю p. Например, для p=7 утверждение получается из следующих равенств в кольце Z7: 2Ä4 = 3Ä5 = 6Ä6 = 1.

40. Арифметика колец и полей. Важнейшие арифметические свойства элементов колец и полей приведены в теоремах.

Теорема. Для любых элементов кольца справедливы равенства:

(а) 0×x = x×0 = 0;

(б) правило знаков: x(- y) = (-x)y = -(xy);

(в) (дистрибутивность умножения относительно разности)

(x - y)z = xz - yz, x(y - z) = xy - xz;

где разность определяется обычным образом x - y := x + (- y).

Доказательство. (а) Имеем: 0×x = (0 + 0)×x = 0×x +0×x, откуда 0×x = 0. Аналогично проверяется и второе равенство x×0 = 0.

(б) Имеем: 0 = x×0 = x×(y + (-y)) = x×y +x×(-y), откуда x×(-y) = -(x×y).

(в) Имеем: (x - y)z =(x + (- y))z = x×z + (-y)×z = x×z - y×z. ÿ

Обозначение.  := a×b-1, если a, b - элементы поля, причем b ¹ 0.

Теорема. В поле справедливы обычные правила работы с дробями:

 (а) основное свойство дроби: ("c¹0) ;

(б) правила сложения дробей: , ;

(в) правило умножения дробей: ;

(г), если ab ¹ 0;

в частности, справедливо известное правило деления дробей.

Доказательство. (а) Действительно, = (ac)×(bc)-1 = acc-1b = a×b-1 = .

(б) Имеем:  = (a + c)×b-1 = a×b-1 + c×b-1 = . И далее на основании уже доказанных свойств получаем .

Аналогично проверяются и два оставшихся пункта. ÿ

 



Информация о работе «Программа государственного экзамена по математике для студентов математического факультета Московского городского педагогического университета»
Раздел: Математика
Количество знаков с пробелами: 38950
Количество таблиц: 13
Количество изображений: 4

Похожие работы

Скачать
106762
1
2

... учебного процесса методической подготовки будущего учителя. Основное содержание исследования отражено в следующих публикациях автора:   I. Монографии: 1. Абдуразаков М.М. Совершенствования содержания подготовки будущего учителя информатики в условиях информатизации образования. –Махачкала: ДГПУ, 2006. –190 с. 12 п.л. 2. Гаджиев Г.М., Абдуразаков М.М. Технология преподавания информатики. – ...

Скачать
47400
0
0

... профиля и специализации. На факультетах общественных наук предметы, входившие в минимум, изучались в расширенном объеме[4]. 2. Положение русского студенчества в конце XIX начале XX века 2.1 Образ русского студента в конце XIX начале XX века В отличие от закрытых учебных заведений, в которых учились в основном дворяне, значительное число учащихся в университетах были людьми незнатными ...

Скачать
899509
4
0

... и устойчивых требований, которые определяют характер и особенности организации коррекционно-образовательного процесса и управления познавательной деятельностью лиц с особыми образовательными потребностями. Специальная педагогика опирается на соответствующие обще- педагогические принципы организации образования и управления познавательной деятельностью, однако их реализация в системе специального ...

Скачать
52769
0
0

... покровителей, сделавших особый вклад в развитие культуры, в Европе называют медичи. Конец девятнадцатого века в России был ознаменован необычайным подъёмом культуры. В связи с этим появились в стране и те, кто этот подъём всячески поддерживал, в том числе и материально. Эти люди были в основном богатыми купцами и промышленниками, которые чувствовали необычайный прогресс в развитии культуры ...

0 комментариев


Наверх