1.2 Биотехнологические процессы в пищевой промышленности

Молочные продукты

В пищевой промышленности для получения молочных продуктов применяют, главным образом, ферментацию[4]. В сквашивании молока обычно принимают участие стрептококки и молочнокислые бактерии; лактоза при этом превращается в молочную кислоту. Путем использования иных реакций, которые сопутствуют главному процессу или идут при последующей обработке, получают и другие продукты переработки молока. Среди них пахта, сметана, йогурт и сыр.

В молоке при ферментации могут протекать шесть основных реакций, и в результате образуются молочная (СН3СН(ОН) СООН), пропионовая (СН3СН2СООН) или лимонная кислота ((НООССН2)2С(ОН) СООН), спирт (С2Н5ОН), масляная кислота (С3Н7СООН) или же происходит колиформное газообразование. Главная из этих реакций – образование молочной кислоты. На ней основаны все способы ферментации (сквашивания) молока. Лактоза молока гидролизуется при этом с образованием галактозы и глюкозы. Обычно галактоза превращается в глюкозу ещё до сквашивания. Имеющиеся в молоке бактерии преобразуют глюкозу в молочную кислоту (путь Эмбдена-Мейергофа-Парнаса). Образование сгустка казеина происходит в изоэлектрической точке этого белка (рН 4,6) под действием молочной кислоты. Этот процесс лежит в основе сыроварения.

При производстве швейцарского сыра ключевую роль играет маслянокислое брожение с образованием углекислого газа.

С6Н12О6=СН3СН2СН2СООН+2СО2+2Н2

Именно это обуславливает своеобразный вкус (букет) этих сыров и образование глазков. Характерный вкус пахты, сметаны и сливочного масла формируется в результате лимоннокислого брожения. Он складывается из составляющих вкусов диацетила (СН3С(О) С(О) СН3), пропионовой и уксусной кислот и близких к ним соединений. Различные процессы ферментации молока проводят сегодня в контролируемых условиях. В течение многих прошедших тысячелетий они осуществлялись при участии бактерий, исходно присутствующих в молоке. В наше время для этого используют разнообразные закваски, позволяющие получать молочные продукты нужного качества и типа. Применяющиеся при этом культуры живых бактерий могут представлять либо один какой-то штамм определенного вида, либо несколько штаммов и / или видов.

Хотя свойства сыров чрезвычайно разнообразны, в процессе выработки всех их есть много общего. Первый этап – это подготовка культуры молочнокислых бактерий и засев ею молока. Затем молоко створаживают, для чего обычно применяют фермент реннин. После отделения водянистой жидкости (сыворотки) полученную творожистую массу подвергают термообработке и прессуют в формах. Далее сгусток солят и ставят на созревание. На следующем этапе сыры отправляют на созревание или выдержку. Созревание происходит в специальных помещениях с контролируемой температурой и длится до четырех лет. Микроорганизмы и ферменты в ходе этого процесса гидролизуют жиры, белки и некоторые другие вещества молодого сыра. В результате их распада образуются вещества, придающие сырам характерный вкус.

Из молочных продуктов проще всего получать масло. В зависимости от сорта производимого масла используют сливки с концентрацией от 30–32 до 30–40%. При их сбивании эмульсия масла в воде превращается в эмульсию воды в масле. При производстве масла для улучшения вкуса и лучшей сохранности используют особые культуры бактерий.

При изготовлении сметаны к сливкам добавляют 0,5–1% закваски, используемой при производстве масла. Далее продукт выдерживают, пока концентрация кислоты не достигнет 0,6%.

Известно, что некоторые люди не переносят лактозу. Для них можно выпускать молоко, обработанное β-галактозидазой – ферментом, который уменьшает содержание лактозы. Для этой цели нужно разработать недорогой промышленный способ производства такого молока. β-Галактозидазу получают из дрожжей, плесневых грибов и бактерий.

Хлебопродукты

Для производства хлеба до сих пор применяют в основном дрожжи Saccharomyces cerevisiae. Обычно их растят в ферментерах периодического действия на мелассе (свекловичной или сахарного тростника). В простейшем случае готовят тесто, смешивая муку, воду, дрожжи и соль. При замесе слои теста перемещаются, создаются условия для образования пузырьков газа и подъема теста. Замешанному тесту дают возможность «подойти», а затем режут на куски нужного веса, формуют и выдерживают во влажной атмосфере. При выдержке и на первой, следующей за ней стадии выпечки образовавшиеся при замесе и формовке «зародыши» газовых пузырьков наполняются углекислым газом. Он выделяется в ходе анаэробного сбраживания глюкозы и мальтозы муки. Поднявшееся тесто выпекают. В ходе этого термического процесса крахмал желатинизируется, дрожжи погибают, и тесто частично обезвоживается. Помимо углекислого газа при анаэробном брожении образуются органические кислоты, спирты и эфиры. Все они заметно влияют на формирование вкуса хлеба.

Кроме хлебопечения, крахмал используют для получения низкомолекулярных углеводов. Гидролиз крахмала в промышленном масштабе осуществляется разными способами: только кислотой, кислотой и ферментами и только ферментами. В середине 60-х годов на смену кислотному и кислотно-ферментативному процессам пришел ферментативный способ переработки крахмала, основанный на последовательном применении α-амилазы B.subtilis и амилоглюкозидазы A.oryzae или A.niger. Кроме производства глюкозы, наиболее заметным успехом в этой отрасли промышленности был выпуск смесей глюкозы и фруктозы. Этот продукт известен под названием изоглюкозы или кукурузного сиропа с высоким содержанием фруктозы. Изоглюкоза может заменять сахарозу в большинстве видов пищи. Изомеризация осуществляется ферментами из различных организмов. Выбор их определяется тем, насколько просто с ними работать, нуждаются ли они в кофакторах и стабильны ли (смотри «Основы инженерной энзимологии»).

Бродильные производства

Получение напитков путем спиртового брожения – одно из древнейших бродильных производств. Первыми из таких напитков были, видимо, вино и пиво. До появления работ Пастера в конце ХIХ в. о сути протекающих при брожении процессов и их механизмах было известно очень мало. Пастер показал, что брожение без доступа воздуха осуществляется живыми клетками дрожжей, при этом сахар превращается в спирт и углекислый газ.

С6Н12О6=2С2Н5ОН+2СО2

Тогда же было показано, что брожение осуществляется под действием каких-то веществ, находящихся внутри дрожжевых клеток. Одно из главных нововведений в области микробиологии брожения было предложено Хансеном. Хансен выделил чистые культуры дрожжей и использовал их в пивоварении; тем самым он стал пионером применения таких культур при производстве пива. Сбраживание осуществляется дрожжами рода Saccharomyces. В одних случаях используется природный сахар (например, содержащийся в винограде, из которого делают вино), в других сахара получают из крахмала (например, при переработке зерновых культур в пивоварении). Наличие свободных сахаров обязательно для спиртового брожения при участии Saccharomyces, так как эти виды дрожжей не могут гидролизовать полисахариды. Образование этилового спирта происходит по схеме Эмбдена – Мейергофа – Парнаса.

Традиционным источником нужных для этого полисахаридов в пивоварении всегда был ячмень. Ячменный солод и другие компоненты измельчают и смешивают с водой при температуре до 67ºС. В ходе перемешивания природные ферменты ячменного солода разрушают углеводы зерна. На заключительной стадии раствор, называемый суслом, отделяют от нерастворимых осадков. Добавив хмель, его кипятят в медных котлах. После добавления дрожжей всё помещают в бродильный чан. По истечении определенного времени брожение заканчивается, дрожжи отделяют от пива и выдерживают его некоторое время для созревания.

В производстве вина используют сахар виноградного сока. Почти все вино в мире делают из винограда одного вида, Vitis vinifera. Виноделие в отличие от пивоварения до самого последнего времени было основано на использовании диких местных дрожжей. Единственная обработка, которой подвергали виноград до отжима, – окуривание его сернистым газом, чтобы сок не темнел. Кроме того, сернистый газ подавляет деятельность невинных дрожжей; это позволяет винным дрожжам, которые менее чувствительны к нему, осуществлять брожение без помех. При изготовлении красного вина гребни, косточки и кожица до конца брожения находятся в виноградном сусле (мусте), а белое вино делают из чистого сока. После завершения спиртового брожения молодое вино хранят в особых условиях, чтобы оно не испортилось. Если вино не предполагается подвергать яблочно-молочнокислому дображиванию, его обрабатывают сернистым газом, что подавляет окислительные процессы, вызывающие его потемнение. До этого из вина удаляют дрожжи, чтобы прекратить брожение

Производство перегнанного спирта моложе, чем неперегнанных спиртных напитков, но и его корни теряются в веках. Для получения напитка, содержащего 40% (по объему) спирта, нужна перегонка. Её и сегодня осуществляют в перегонных аппаратах, представляющих собой модификации устройства, предложенного в 1830 г. Коффи и носящего его имя. В спиртовом производстве используются пригодные для этой цели штаммы Saccharomyces.

Уксус – это продукт, содержащий не менее 4% (вес/объем) уксусной кислоты; его получают с помощью двухстадийного процесса. Вначале осуществляют спиртовое брожение, в ходе которого сахар сырья превращается в спирт при участии S. cerevisiae. После завершения этого этапа дрожжам дают осесть и собирают надосадочную жидкость. Содержание спирта доводят до 10–13%. На следующем этапе этиловый спирт превращается в уксусную кислоту (промежуточным продуктом является ацетальдегид). Все процессы получения уксуса идут при участии смешанных культур Acetobacter. Брожение происходит а аэробных условиях с потреблением больших количеств кислорода и выделением тепла.

Производство кормового белка

В соответствии с нормами питания человек должен ежедневно получать с пищей 60–120 г. полноценного белка. Если растения и большинство микроорганизмов способны синтезировать все белковые аминокислоты из углекислоты, воды, аммиака и минеральных солей, то человек и животные не могут синтезировать некоторые аминокислоты (валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан и фенилаланин), которые называют незаменимыми. Эти аминокислоты должны поступать в организм в готовом виде с пищей; их отсутствие вызывает тяжелые заболевания человека и снижение продуктивности сельскохозяйственных животных. Незаменимые аминокислоты наиболее сбалансированы в белках семян сои. Относительно высокую биологическую ценность имеют также белки зерна риса и гороха. В белках зерна пшеницы и ячменя очень мало лизина, метионина и изолейцина, а в белках кукурузы ещё и триптофана.

Особый интерес представляет использование микроорганизмов в качестве источника белка и витаминов при производстве пищевых продуктов. Перспектива и экономическая целесообразность употребления микроорганизмов в технологии производства пищевых продуктов диктуется рядом факторов:

1)  возможностью использования самых разнообразных химических соединений, в том числе отходов производства, для культивирования микроорганизмов;

2)  высокой интенсивностью синтеза белков;

3)  относительно несложной технологией культивирования микроорганизмов;

4)  относительно высоким содержанием белка и витаминов;

5)  повышенным содержанием незаменимых аминокислот по сравнению с растительными белками;

6)  возможностью направленного генетического влияния на химический состав микроорганизмов в целях совершенствования белковой и витаминной ценности продукта (ГМО).

В настоящее время мировой дефицит белка составляет около 15 млн. т. Наиболее перспективен микробиологический синтез, что следует из представленных ниже данных. Если для крупного рогатого скота требуется 5 лет для удвоения белковой массы, для свиней – 4 мес., для цыплят – 1 мес., то для бактерий и дрожжей – 1–6 ч. Мировое производство пищевых белковых продуктов за счет микробного синтеза составляет более 15 тыс. т в год. В качестве источников кормового белка чаще используют различные виды дрожжей и бактерий, микроскопические грибы, одноклеточные водоросли, белковые коагулянты травянистых растений.

Дрожжевые клетки в качестве источника углерода для роста способны использовать неразветвленные углеводороды с числом от 10 до 30 углеродных атомов в молекуле. В основном они представлены жидкими фракциями углеводородов нефти с температурой кипения 200–320ºС. В России первый завод по производству кормовых дрожжей из жидких парафинов нефти вступил в действие в 1971 г. Альтернативная цепочка расщепления углеводородов: н-Алканы (С9 – С30) Алифатические спирты

Алифатические кислоты Ацил-КоА Ацетил-КоА

При выращивании дрожжей на н-парафинах нефти в приготовленную из них питательную среду добавляют макро- и микроэлементы, необходимые витамины и аминокислоты[13]. Высушенная дрожжевая масса гранулируется и используется как белково-витаминный концентрат (БВК), содержащий до 50–60% белковых веществ, для кормления сельскохозяйственных животных.

Хорошим субстратом для выращивания кормовых дрожжей является молочная сыворотка – производственный отход при переработке молока. В качестве источников углерода дрожжевые клетки могут использовать и низшие спирты – метанол и этанол, получаемые в биотехнологии из природного газа или растительных отходов. Дрожжевая масса, полученная после культивирования дрожжей на спиртах, содержит больше белков (56–62% от сухой массы) и меньше вредных примесей, чем кормовые дрожжи, выращенные на н-парафинах нефти, такие, как производные бензола, D-аминокислоты, аномальные липиды, токсины и канцерогенные вещества. Вместе с тем белки дрожжей частично не сбалансированы по метионину, в них мало цистеина и селенцистеина.

Наряду с технологией использования дрожжевых белков в качестве кормовой добавки в рационы сельскохозяйственных животных разработаны технологии получения из них пищевых белков. Важный резерв пищевого белка и витаминов – остаточные пивные дрожжи Saccharomyces carlsbergensis. Организм человека усваивает свыше 90% всех питательных веществ, содержащихся в них. Пивные дрожжи могут с успехом применяться при производстве колбас в качестве заменителя казеина. Белки дрожжей применяют также при получении искусственного мяса. Для этого их нагревают с последующим быстрым охлаждением или продавливанием белковой пасты через отверстия малого диаметра.

Известно более 30 видов бактерий, которые могут быть применены в качестве источников полноценного кормового белка. Бактериальные белковые концентраты с содержанием сырого белка 60–80% (от сухой массы) – ценные препараты в кормопроизводстве. Следует отметить, что бактерии значительно быстрее, чем дрожжевые клетки, наращивают биомассу и, кроме того, белки бактерий содержат больше цистеина и метионина, что позволяет отнести их в разряд белков с высокой биологической ценностью. Источником углерода при культивировании бактерий могут служить природный и попутный газы, водород, а также спирты – метанол, этанол, пропанол. К числу бактерий с высокой интенсивностью синтеза белков следует отнести и водородокисляющие бактерии, способные накапливать в клетках до 80% сырого белка. Для их культивирования в составе газовой среды обычно содержится 70–80% водорода, 20–30% кислорода и 3–5% СО2.

Для получения кормового белка используют одноклеточные водоросли Chlorella и Scenedesmus, сине-зеленые водоросли из рода Spirulina, способные синтезировать белки из диоксида углерода, воды и минеральных веществ за счет энергии солнечного света. Водоросли для своего развития нуждаются в определенных режимах освещения и температуры и в больших объемах воды. Обычно их выращивают в естественных условиях южных регионов в бассейнах открытого типа. При выращивании водорослей в культиваторах открытого типа с 1 га водной поверхности можно получать до 70 т сухой биомассы в год, что превышает выход биомассы при возделывании пшеницы, риса, сои, кукурузы. Белки водорослей хорошо сбалансированы по содержанию незаменимых аминокислот, за исключением метионина. В клетках водорослей, кроме того, синтезируется довольно много полиненасыщенных жирных кислот и β-каротина.

В биомассе многих микроскопических грибов хорошо сбалансированы по аминокислотному составу белки; они включают также витамины и липиды. По своим питательным свойствам белки грибов приближаются к белкам сои и мяса, что позволяет использовать из не только для приготовления кормовых концентратов, но и как добавку в пищу человека. Источником углерода для промышленного выращивания микроскопических грибов служат растительные отходы, содержащие клетчатку, гемицеллюлозы, лигнин, а также торф и навоз. В Великобритании создан пищевой продукт, основным компонентом которого является белок грибного происхождения – микопротеин на дешевом глюкозном сиропе, полученном путем гидролиза пшеничного или кукурузного крахмала.


Информация о работе «Изучение вопросов биотехнологии в курсе химии средней школы»
Раздел: Педагогика
Количество знаков с пробелами: 157154
Количество таблиц: 13
Количество изображений: 8

Похожие работы

Скачать
68936
2
7

... весь цилиндр. Это опыт демонстрирует одну из биологических функций железа. По химической природе, каталаза – геминовый фермент, содержащий железо. [3] 2. Разработка темы «Основания» в курсе неорганической и органической химии 2.1 Урок по теме «Основания»   Цели урока: познакомить учащихся с новым классом химических соединений – основаниями, их свойствами (отношение к воде, действие на ...

Скачать
36422
1
0

... области создания новых конструкционных материалов с заданными химическими и физическими свойствами. Обсудить возможности и перспективы синтеза таких материалов на основе органических и неорганических полимеров. Прикладная химия неотделима и от социально-бытовой сферы общества. В лекциях необходимо знакомить студентов с областями применения продуктов химических производств. Это расширит кругозор ...

Скачать
87142
4
4

... период многие страны приняли решение о полном или постепенном отказе от развития атомной энергетики. 1.3 Особенности альтернативной водородной энергетики Водородная энергетика включает следующие основные направления: Разработка эффективных методов и процессов крупномасштабного получения дешевого водорода из метана и сероводородсодержащего природного газа, а также на базе разложения воды; ...

Скачать
208749
33
26

... экспериментальной площадки был выбран 9 А класс. В этом классе 29 человек: 17 мальчиков и 12 девочек. Цель эксперимента: выявление психолого-педагогических условий профессионального самоопределения учащихся в процессе обучения биологии; а также формирование устойчивой положительной мотивации к изучению курса биологии и развитие профессионального самоопределения учащихся при изучении курса “Общая ...

0 комментариев


Наверх