2.1.3.3.2. Получение формулы Ньютона. Определим рекуррентное соотношение для нахождения корня методом Ньютона.

Уравнение касательной в точке  можно получить как уравнение прямой, проходящей через заданную точку  и имеющей угловой коэффициент :

 В точке  пересечения касательной с осью Х, величина  равняется нулю:

Отсюда

 В общем случае для вычисления последующего приближения  к корню по известному предыдущему  формула Ньютона имеет вид:

 К такому же результату можно придти, используя разложение в ряд Тейлора:

Члены, содержащие  во второй и более высоких степенях, отбрасываются; используется соотношение  . Предполагается, что переход от  к  приближает значение функции к нулю так, что  т.е. точка  выбирается такой, что значение функции в ней равняется нулю:

Полученная точка  является точкой пересечения касательной в точке  с осью Х. Поскольку кривая  отлична от прямой, то значение функции  скорее всего не будет в точности равно нулю (это результат отбрасывания членов высшего порядка в ряде Тейлора). Поэтому вся процедура повторяется, причем вместо  используется .

Одно из преимуществ метода Ньютона – это то, что его можно распространить на решение систем нелинейных уравнений со многими переменными.

2.1.4. Решение систем нелинейных алгебраических и трансцендентных уравнений

2.1.4.1. Постановка задачи. Система n нелинейных уравнений с n неизвестными имеет вид:

 (2.2)

где  – неизвестные;

– заданные функции n переменных.

Решением системы НАТУ называется совокупность чисел , которые, будучи поставлены на место неизвестных  ,обращают каждое уравнение системы в тождество. Система (2.2) может иметь несколько решений. Нахождение решения системы уравнений является значительно более сложной задачей, чем решение одного уравнения. Для систем НАТУ не существует каких–либо приемов, используя которые получали бы приближенные значения корней. В некоторых случаях в результате построения графиков с последующим определением координат точек пересечения можно получить приближенные значения корней. Для уточнения корней всегда применяются итерационные методы, чаще всего метод Ньютона.

2.1.4.2. Метод Ньютона для решения систем НАТУ. Представим все n уравнений в виде рядов Тейлора:

(2.3)

Задача сводится к отысканию такой совокупности приращений , при которой  близки к корню, т.е. левые части уравнений (2.3) обращаются в нули. Отбросив члены более высоких порядков, получим систему линейных алгебраических уравнений (СЛАУ) относительно :

(2.4)

Систему линейных уравнений (5.4) можно записать в матричном виде:

 (2.5),

где матрица коэффициентов (А) состоит из частных производных функций по всем переменным, а вектор свободных членов (В) – из функций с противоположным знаком. Матрица в левой части (2.5) называется матрицей Якоби или якобианом.

Найденные из системы (2.5) значения  используются как поправки для получения очередного – го приближения к решению:

 (2.6)

Таким образом, для выполнения одной итерации методом Ньютона решают СЛАУ (2.5) относительно вектора поправок . Получив значение вектора поправок  (), получим очередное приближение к корням  () (2.6) и т.д. до тех пор, пока все получаемые поправки  не будут достаточно малы, что свидетельствует о близости приближенного решения к истинному ().

Следует обратить внимание на то, что проверку поправок  на каждом шаге итерации на условие < () необходимо выполнять для значений поправок всех корней (.

Пример: Найти методом Ньютона решение системы уравнений

Решение. Очевидно,

Для формирования матрицы Якоби получим частные производные:

Подставив в (2.5) в качестве: матрицы коэффициентов (А) – частные производные функций и вектора свободных членов (В) – функции с противоположным знаком, получим запись СЛАУ в виде:

 (2.7)

Задавшись некоторым начальным приближением  () и, подставив его вместо () в систему (2.7), решим полученную систему линейных уравнений (например, матричным способом ) и получим значение поправок . Если поправки не будут достаточно малы (т.е. условие < не выполняется), то вычисляется очередное приближение к корням:  

С полученным  затем повторяют те же операции, что и с  для получения  и, если необходимо,  и т.д. до тех пор, пока все получаемые поправки  не будут достаточно малы, что свидетельствует о близости приближенного решения к истинному.


Информация о работе «Анализ линейных стационарных объектов»
Раздел: Информатика, программирование
Количество знаков с пробелами: 34983
Количество таблиц: 6
Количество изображений: 8

Похожие работы

Скачать
99279
0
156

уле . Т.о. имеем: Минимальная энергия: Найдем управление по следующей формуле: Тогда оптимальное управление .   3.2 Оптимальная L – проблема моментов в пространстве состояний Система задана в виде: Решение ДУ имеет вид: , при  имеем: . Составим моментные уравнения: Подставляя необходимые данные в выше приведенные формулы, получим следующие ...

Скачать
7147
1
16

... , Полученные данные будут составлять так называемую неизменяемую часть системы. Получим, что передаточная функция такой неизменяемой части системы имеет вид 2. Структурная схема САУ с микропроцессорным регулятором Поскольку микропроцессорный регулятор построен на базе Микро-ЭВМ и может обрабатывать сигналы только дискретной формы" а сигнал на выходе объекта Ux и регулирующий сигнал Ur - ...

Скачать
68359
14
22

... цепи   W1(s) = Wp(s) представлено как параллельное соединение простейших звеньев. 2.9 Неопределенность моделей систем управления Математические модели не отражают исчерпывающим образом динамические свойства систем управления в силу идеализации и упрощений, неизбежных при моделировании, неточной реализации алгоритмов управления и изменений характеристик объектов и других элементов в ...

Скачать
436879
14
4

... , на нерегулируемые его влияние не распространяется. Учет по центрам ответственности позволяет оценить деятельность подразделения и его руководителя, обеспечивает оперативный учет, анализ и контроль, а также предоставление информации о затратах. Задачи анализа затрат на качество обусловливают введение двух отчетных форм: -      сводный отчет о затратах на качество, содержащий полную информацию о ...

0 комментариев


Наверх