Структура ВКА

Схемотехническое и функциональное проектирование вакуумной коммутационной аппаратуры
Па; 3) оборудование с рабочим вакуумом выше 1 10 Па Г, д, можно отнести использование механизма непосредственного Показаны некоторые кинематические схемы исполнительных орга- Аналитический обзор методов поискового конструирования Проанализированы характерные режимы эксплуатации ВКА, оп- Функции и структура ВКА Структура ВКА Свойства ВКА и ее структурных составляющих Цели проектирования ВКА Уравнение функционирования и критерии оптимальности РАЗРАБОТКА МЕТОДОЛОГИИ СХЕМОТЕХНИЧЕСКОГО И ФУНКЦИО- Методика синтеза структур ВКА СОЗДАНИЕ НОВЫХ КОНСТРУКЦИЙ ВКА НА БАЗЕ АВТОМАТИЗАЦИИ СХЕ- Программные средства синтеза и анализа структур ВКА Структурно-функциональная модель САПР ВКА на этапе схе- Конструкции ВКА, разработанные на основе синтезированных Конструкции ВКА, разработанные на основе использования На основе применения созданных программных средств м раз- Создан комплекс программных средств, реализующий разрабо-
172573
знака
0
таблиц
0
изображений

2.2.2. Структура ВКА.

Предлагаемый подход к рассмотрению структур ВКА основан на

том, что проектирование формально представляют как создание, поиск

и преобразование различных аспектов структур ТО [118]. В связи с

этим важно определить множество видов структур ВКА, необходимое и

достаточное для отображения процесса функционального и схемотехни-

ческого проектирования.

С учетом изложенного структуру ВКА в общем случае можно

описать следующим образом:

(2.7)

где , , , , , , - соответственно принципи-

альная, функциональная, абстрактная, морфологическая, вариантная,

элементная и компоновочная структуры.

Принципиальная структура (или структура действий)

состоит из множества выполняемых ВКА действий и отношений сле-

дования , указывающих на порядок действий. На рис. 2.1

представлен граф обобщенной структуры ВКА, где -

действия, реализующие обобщенную функцию ВКА (см. табл. 2.2).


- 48 -

Множество базовых функций и абстрактных связей между ними

образуют множество функциональных структур . На рис.

2.2 показано множество типовых функциональных структур ВКА, где

вершины - основные базовые функции ВКА (см. табл.

2.2).

В свою очередь каждой базовой функции можно поставить в

соответствие некий реализующий ее обобщенный родовой элемент -

функциональный модуль, являющийся абстрактным объектом , обла-

дающим неким множеством общих свойств и имеющим множество вариан-

тов исполнения, которые наследуют общие свойства ФМ и отличаются

от него оригинальными свойствами [119]. Таким образом, абстрактная

структура имеет множество взаимосвязанных абстракт-

ных родовых элементов , исполняющих базовые функции .

Установим требуемые соответствия : - функция

привода (ФМ ); - множество типов приводов; - функция меха-

низма преобразования движения (ФМ ); - множество механизмов;

- функция вакуумного ввода движения (ФМ ); - множество ти-

пов вводов движения; - функция механизма перемещения уплотни-

тельного диска и герметизации (ФМ ); - множество механизмов;

- функция уплотнительной пары (ФМ ) - условного ФМ, образуемо-

го седлом и уплотнительным диском; - множество типов уплотни-

тельных пар; - функция корпуса (ФМ ); - множество типов

корпусов. На рис. 2.3 показано множество обобщенных структур .

ВКА, в котором вершины , = 1,6 - вышеописанные абстрактные

ФМ.

Структура является основой для построения морфологической

структуры ВКА, которую с позиций функционально-схемотехни-

ческого проектирования ВКА целесообразно и достаточно представить

двухуровневым деревом. Первый уровень - ВКА как техническая систе-

ма в целом, второй уровень - функциональные модули ВКА, где П -


- 50 -

привод; ВД - вакуумный ввод движения; УП - уплотнительная пара; М1

- механизм преобразования движения; М2 - механизм перемещения уп-

лотнительного диска; К - корпус. Намечен третий иерархический уро-

вень - множество вариантов ФМ. Морфологическая структура

, имеет два подмножества вершин: -

типы ФМ (вершины "и") и - множество вариантов исполне-

ния типов (вершины "или"), а также два подмножества отношений:

- отношения включения между элементами , - родовидовые

отношения между и . Структура описывается графом типа

дерева, представленном на рис. 2.4, где - вершины "и", -

вершины "или" (конкретизация графа - рис. 1.12). Возможно дальней-

шее расширение данного дерева и вглубь и в ширину. При этом раз-

ветвление дерева произойдет в случае появления новых вариантов ФМ

в результате анализа возможности применения в ВКА их существующих

воплощений (например, электрических приводов [71]) или появления

новых дополнительных ФМ [79].

Замена абстрактных элементов вариантами их исполнения

образует вариантную структуру .

Если на множестве конкретных вариантов ввести отношения

соединения , получим множество элементных структур .

При этом декартово произведение ,

определяет множество всевозможных вариантов решений для обоб-

щенной структуры ВКА. Отличие структуры от состоит в том,

что множество элементов в ней имеет конкретное имя вместо

абстрактного, а абстрактные отношения связи заменены на конк-

ретные отношения соединения . На рис. 2.5 показан граф струк-

туры одного из вариантов ВКА [120] (рис. 1.4, а), в котором

вершины: - "ручной привод", - "эксцентриковый механизм

преобразования движения", - "сильфонный ввод движения в ваку-

ум", - "рычажный механизм перемещения уплотнительного диска",


- 53 -

- "резино-металлическая уплотнительная пара", - "проход-

ной корпус".

Компоновочная структура есть развитие графа , отража-

ющая компоновку ВКА: , где - множество элементов

из ; - множество пространственных отношений взаимного

расположения, принадлежности, направления, характеризуемых поняти-

ями типа "перпендикулярно", "параллельно", "соосно", "внутри",

"снаружи", "по оси Х" и т.п.

Таким образом, ВКА представляет собой некий состав определен-

ным образом взаиморасположенных и взаимосвязанных ФМ, что позволя-

ет сформулировать следующие утверждения, объясняющие некоторые ра-

нее приведенные положения.

Утверждение 1. В структуре ВКА обязательно существуют привод

и уплотнительная пара, в противном случае ВКА функционировать не

будет.

Утверждение 2. В случае корпусного выполнения ВКА уплотни-

тельная пара всегда расположена внутри корпуса, в то время как

привод расположен с внешней стороны корпуса.

Следует отметить, что в ВТО бескорпусное выполнение ВКА прак-

тически не используется.

В соответствии с утверждением 2 передача движения от ФМ "при-

вод" к элементу "уплотнительный диск" ФМ "уплотнительная пара"

влечет за собой появление обязательного ФМ "ввод движения в ваку-

ум" (с новой рабочей функцией "передавать движение из ат-

мосферы в вакуум"), связанного с ФМ "корпус" (функция "со-

держать вакуумную среду"), определяющего взаимосвязь ФМ:

ФМ ФМ (ФМ ) ФМ (2.8)

где - знак отношения следования.

Перечисленные ФМ являются для ВКА основными (обязательными)

ФМ, что подтверждает и проведенный анализ ее существующих


- 54 -

конструкций (п. 1.2).

Каждый из перечисленных ФМ обладает собственным набором

свойств, позволяющих реализовать свою рабочую функцию и харак-

теризуемых согласно (2.7) соответствующими и . При

этом главным условием возможности сопряжения ФМ является идентич-

ность предшествующего ФМ (с функцией ) с последую-

щего ФМ (с функцией ). В случае несогласования и , т.е.

при , необходимо включение ФМ (со вспомогательной

функцией ) такого, что:

и (2.9)

Из этого вытекает следующее утверждение:

Утверждение 3. Если значения функциональных параметров сопря-

гаемых ФМ ВКА не совпадают, то между ними располагается вспомога-

тельный ФМ, их согласующий.

Предположив, что в общем случае и ФМ из (2.8) между

собой не согласованы, введем по каждому следованию вспомогательные

ФМ. Поскольку такими параметрами основных ФМ являются характе-

ристики движения, то вспомогательными ФМ ВКА являются механизмы,

что нашло отражение в таблице 2.2 и в описании структуры , где

каждой поставлен в соответствие определенный ФМ - .

При этом множество функций для всех действий ВКА форми-

рует полную функциональную структуру и соответствующие ей полную

абстрактную и вариантную структуры, включающие максимально возмож-

ное количество ФМ, реализующих основную функцию . Например,

согласно таблице 2.2, ВКА может иметь до трех приводов, вводов

движения и соответственное число механизмов [121]. Подобные струк-

туры весьма сложны, а при необходимости дальнейшего членения ВКА

получаются громоздкими и труднообозримыми, поэтому при рассмотре-

нии целесообразно проводить их декомпозицию путем разбиения на от-

дельные фрагменты [119]. Обобщенные структуры (рис. 2.3) отоб-


- 55 -

ражают данный подход, используя тождество функций:

= 1,4 (2.10)

Следующим этапом системного анализа ВКА является определение

ее свойств.


Информация о работе «Схемотехническое и функциональное проектирование вакуумной коммутационной аппаратуры»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 172573
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
42765
0
0

... модели функционирования ВКА и критерии оптимальности конструкций ВКА. 6. Новый класс ВКА переменной структуры и конструкции ВКА. I. СОВРЕМЕННОЕ СОСТОЯНИЕ РАБОТ ПО СОЗДАНИЮ ВАКУУМНОЙ КОММУТАЦИОННОЙ АППАРАТУРЫ I.I. Анализ связей ВКА с оборудованием электронной техники. Основные требования, предъявляемые к ВКА. Вакуум как рабочая среда технологических процессов и научных исследований находит ...

Скачать
148336
19
1

... сборки и маршрутные карты приведены в приложении. 9. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ   9.1 Краткая экономическая характеристика проектируемого устройства Разрабатываемое в дипломном проекте устройство представляет собой блок обмена сообщениями аналоговой ЭАТС. В развитых зарубежных странах широкое применение нашли аналоговые ЭАТС типа IBM 1750 (США), DST1 (Италия), ЕК-50 (Япония), АТС 501 ...

Скачать
138399
23
10

... УЛПМ-901. 11 Визуальный контроль качества сборки при увеличении 2,5. ГГ6366У/012. Маршрутная карта на техпроцесс изготовления печатной платы приведена в приложении. 8 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОГО ПРОЕКТА 8.1 Характеристика изделия «Модуль управления временными параметрами». Обоснование объема производства и расчетного периода Модуль управления временными параметрами – ...

Скачать
183285
12
5

... : ¾   температура, °С +25±10; ¾   относительная влажность воздуха, % 45...80; ¾   атмосферное давление, мм рт. ст. 630...800. Так как блок интерфейсных адаптеров предназначен для работы в нормальных условиях, в качестве номинальных значений климатических факторов указанные выше принимают нормальные значения ...

0 комментариев


Наверх