1.11 Особенности процесса формообразования.


После всего вышеизложенного, можно выделить следующие особенности процесса шлифования:

каждое абразивное зерно участвует в работе в течение не всего времени обработки детали – прерывистое резание.

в течение всего времени обработки детали размеры и площадь сечения срезаемого слоя изменяются.

условия удаления стружки из зоны резания, для банного вида обработки, благоприятны.

условия подвода СОЖ в зону резания благоприятны.

жесткость технологической системы при данном виде обработки достаточна.

кинематические углы изменяются в процессе работы.

Шлифовальные круги, режимы резания назначают исходя из конкретных условий обработки. При повышенных требованиях к шероховатости поверхности применяют круги с меньшим номером зернистости, при шлифовании зубчатых колес силовых передач применяют круги зернистостью до 40. В остальных случаях номер зернистости выбирают, исходя из требований чертежа детали.


2 Назначение параметров режима резания


Задание:

Обработать отверстие диаметром d1, полученное после штамповки, до диаметра d2, на глубину L. Сопоставить эффективность обработки при различных процессах формообразования в серийном производстве: рассверливание и зенкерование.


Таблица 1. Исходные данные.


Вар.

d1, Диам. заг., мм

d2 , Диам. дет., мм

L

Длина

отв., мм


Шерох.

Марка обраб. мат-ла

Механические свойства

Модель

станка







sв, Мпа

НВ
4 20 20,9 40

Rz 40

Сталь 40ХН 700 207 2А125

2.1 Кинематическая схема резания


Кинематические схемы рассверливания (рис. 2.1) и зенкерования (рис. 2.2):

Рисунок 2.1. Кинематическая схема рассверливания.


след – след.


Рисунок 2.2. Кинематическая схема зенкерования.


след – след.


2.2 Выбор инструментального материала и геометрии инструмента.


В основном, сверла делают из быстрорежущих сталей. Твердосплавные сверла делают для обработке конструкционных сталей высокой твердости (45...56HRC), обработке чугуна и пластмасс. Исходя из твердости обрабатываемого материала – 207 НВ, принимаем решение об применении сверла из быстрорежущей стали Р6М5 ГОСТ 19265-73. Крепежную часть сверла изготовим из стали 40Х (ГОСТ 454-74).


Рисунок 2.3. Спиральное сверло.


Задний угол . Величина заднего угла на сверле зависит от положения рассматриваемой точки режущего лезвия. Задний угол имеет наибольшую величину у сердцевины сверла и наименьшую величину - на наружном диаметре.

Передний угол. Также является величиной переменной вдоль режущего лезвия и зависит, кроме того, от угла наклона винтовых канавок  и угла при вершине 2. Передняя поверхность на сверле не затачивается и величина переднего угла на чертеже не проставляется.

Рисунок 2.4. Геометрические параметры винтового сверла.


Кинематические углы рассчитываются по следующим формулам:

где αХ – статический задний угол в данной точке;

S0 – подача на оборот, мм/об;

ρ – радиус в данной точке, мм.

Статические углы тоже непостоянны.


При обработке сталей, экономически выгодно использовать зенкер из следующих марок быстрорежущих сталей Р18, Р6М5Ф3, Р6М5, Р9К10, Р10К5Ф5 и т.д. Выбираем марку быстрорежущей стали Р6М5, ГОСТ 19256-73. Для экономии быстрорежущей стали, зенкер делают составным неразъемным, сваренным, с помощью контактной сварки оплавлением. Хвостовик изготавливают из стали 40Х ГОСТ 454-74.


Рисунок 2.5. Зенкер цельный.


Кинематические углы α и γ зависят от того, в какой части режущей кромки их рассматривать. Это объясняется тем что при одной и той же подаче скорость резания в разных точках разная, так как они находятся на разных расстояниях от оси зенкера. Таким образом, результирующий вектор в каждой точке имеет свое направление.

Рисунок 2.5. Изменение кинематических углов зенкера.


Кинематические углы рассчитываются по следующим формулам:

где αХ – статический задний угол в данной точке;

S0 – подача на оборот, мм/об;

ρ – радиус в данной точке, мм.



Информация о работе «Анализ процесса формообразования и расчет параметров режимов резания»
Раздел: Технология
Количество знаков с пробелами: 34171
Количество таблиц: 3
Количество изображений: 32

Похожие работы

Скачать
106716
38
6

... приведены в таблице 2.1. Таблица 2.1. Основные экономические параметры вариантов технологического процесса Варианты технологического процесса Себестоимость Руб. Тшт.к. Мин. Заводской технологический процесс 72.6 20.7 Технологический процесс №2 84.1 10,74 Технологический процесс №3 86.6 13.37   Проведя анализ по себестоимости и Тшт.к. Выбираем оптимальный ...

Скачать
114131
28
14

... нам необходимо придерживаться принципа сохранения баз для получения детали большей точности и исключение погрешностей переустановки. 2.6. Разработка технологического маршрута обработки детали   В условиях производства разработка технологических процессов изготовления деталей производится с учетом технического и экономического принципов. В соответствии с техническим принципом проектируемый ...

Скачать
120425
10
11

...  (мин). Штучное время: Тшт=То+Твсп.неп+Ттех+Торг+Тотд (12) Тшт=0,08+0,76+0,008+0,013+0,05=0,91 (мин). 3. ОБОСНОВАНИЕ ТЕХНИЧЕСКОЙ ХАРАКТЕРИСТИКИ СТАНКА   3.1 Обоснование бесцентровой обработки Обработка коленчатого вала на станке NAGEL проводится в центрах, вал вращается с помощью поводкового патрона. Зажимные рычаги имеют возможность перемещаться в радиальном направлении и, по сути, ...

Скачать
164206
16
29

... ремонт оборудования. Защита от шума Борьба с шумом посредством уменьшения его в источнике является наиболее рациональной. Уменьшение механического шума может быть достигнуто путем совершенствования технологических процессов и оборудования. Расчет допустимого уровня шума Расчетная формула для определения уровня шума, если источник шума находится в помещении, будет иметь вид: , (4.1) где В ...

0 комментариев


Наверх