3. Оператор в системе «человек машина».

Как уже отмечалось, независимо от степени автомати­зации СЧМ, человек остается главным звеном системы «человек — машина». Именно он ставит цели перед систе­мой, планирует, направляет и контролирует весь процесс ее функционирования. Поэтому деятельность оператора является исходным пунктом инженерно-психологического анализа и изучения СЧМ. Деятельность оператора имеет ряд особенностей, определяемых следующими тенденци­ями развития современного производства.

1. С развитием техники увеличивается число объектов (и их параметров), которыми необходимо управлять. Это усложняет и повышает роль операций по планированию и организации труда, по контролю и управлению производ­ственными процессами.

2. Развиваются системы дистанционного управления. Человек все более удаляется от управляемых объектов, о динамике их состояния он судит не по данным непосред­ственного наблюдения, а на основании восприятия сигна­лов от устройств отображения информации, имитирую­щих реальные производственные объекты. Осуществляя дистанционное управление, человек получает необходимую информацию в закодированном виде (т. е. в виде показа­ний счетчиков, индикаторов, измерительных приборов и т. д.), что обусловливает необходимость декодирования и мысленного сопоставления полученной информации с со­стоянием реального управляемого объекта.

3. Увеличение сложности и скорости течения производ­ственных процессов выдвигает повышенные требования к точности действий операторов, быстроте принятия реше­ний в осуществлении управленческих функций. В значи­тельной мере возрастает степень ответственности за совер­шаемые действия, поскольку ошибка оператора при выпол­нении даже самого простого акта может привести к нару­шению работы всей системы «человек — машина», создать аварийную ситуацию с угрозой для жизни работающих людей. Поэтому работа оператора в современных чело­веко-машинных комплексах характеризуется значитель­ными увеличениями нагрузки на нервно-психическую дея­тельность человека, в связи с чем по-иному ставится проб­лема критериев тяжести операторского труда. Основным критерием становится не физическая тяжесть труда, а его нервно-психическая напряженность.

4. В условиях современного производства изменяются условия работы человека. Для некоторых видов деятельно­сти оператора характерно ограничение двигательной ак­тивности, которое не только проявляется в общем умень­шении количества мышечной работы, но и связано с преи­мущественным использованием малых групп мышц. Иногда оператор должен выполнять работу в условиях изоляции от привычной социальной среды, в окружении приборов и индикаторов. И если эти устройства спроектированы без учета психофизиологических особенностей оператора либо выдают ему ложную и искаженную информацию, то воз­никает ситуация, которую образно называют «конфлик­том» человека с приборами .

5. Повышение степени автоматизации производствен­ных процессов требует от оператора высокой готовности к экстренным действиям. При нормальном протекании про­цесса основной функцией оператора является контроль и наблюдение за его ходом. При возникновении нарушений оператор должен осуществить резкий переход от монотон­ной работы в условиях «оперативного покоя» к активным, энергичным действиям по ликвидации возникших отклоне­ний. При этом он должен в течение короткого промежутка времени переработать большое количество информации, принять и осуществить правильное решение. Это приводит к возникновению сенсорных, эмоциональных и интеллек­туальных перегрузок.

Рассмотренные особенности операторского труда поз­воляют выделить его в специфический вид профессиональ­ной деятельности, в связи с чем для его изучения, анализа и оценки недостаточно классических методов, разработан­ных психологией и физиологией труда и используемых для оптимизации различных видов работ, не связанных с ди­станционным управлением по приборам.

Деятельность оператора в системе «человек — ма­шина» может носить самый разнообразный характер. Не­смотря на это, в общем виде она может быть представлена в виде четырех основных этапов.

1. Прием информации. На этом этапе осуществляется восприятие поступающей информации об объектах управ­ления и тех свойствах окружающей среды и СЧМ в целом, которые важны для решения задачи, поставленной перед системой «человек — машина». При этом осуществляются такие действия, как обнаружение сигналов, выделение из их совокупности наиболее значимых, их расшифровка и декодирование; в результате у оператора складывается предварительное представление о состоянии управляемого объекта: информация приводится к виду, пригодному для оценки и принятия решения.

2. Оценка и переработка информации. На этом этапе производится сопоставление заданных и текущих (реаль­ных) режимов работы СЧМ, производится анализ и обоб­щение информации, выделяются критичные объекты и си­туации и на основании заранее известных критериев важ­ности и срочности определяется очередность обработки информации. Качество выполнения этого этапа во многом зависит от принятых способов кодирования информации и возможностей оператора по ее деко­дированию. На данном этапе оператором могут выпол­няться такие действия, как запоминание информации, из­влечение ее из памяти, декодирование и т. п.

3. Принятие решения. Решение о необходимых дейст­виях принимается на основе проведенного анализа и оценки информации, а также на основе других известных све­дений о целях и условиях работы системы, возможных спо­собах действия, последствиях правильных и ошибочных решений и т. д. Время принятия решения существенным образом зависит от энтропии множества решений. Если же каждому состоянию объекта могут быть поставлены в соответствие несколько решений, то при расчете энтропии нужно учесть еще и сложность выбора из множества возможных решений необходимого.

4. Реализация принятого решения. На этом этапе осу­ществляется приведение принятого решения в исполнение путем выполнения определенных действий или отдачи соот­ветствующих распоряжений. Отдельными действиями на этом этапе являются: перекодирование принятого решения в машинный код, поиск нужного органа управления, дви­жение руки к органу управления и манипуляция с ним (на­жатие кнопки, включение тумблера, поворот рычага и т. п.). На каждом из этапов оператор совершает самокон­троль собственных действий. Этот самоконтроль может быть инструментальным или неинструмеитальным. В пер­вом случае оператор проводит контроль своих действий с помощью специальных технических средств (например, с помощью специальных индикаторов контролирует пра­вильность набора информации). Во втором случае кон­троль ведется без применения технических средств. Он осуществляется путем визуального осмотра, повторения отдельных действий и т. п. Проведение любого вида само­контроля способствует повышению надежности работы оператора.

На качество и эффективность выполнения каждого из рассмотренных этапов оказывает влияние целый ряд фак­торов. Так, например, качество приема информации зави­сит от вида и количества индикаторов, организации ин­формационного поля, психофизических характеристик предъявляемой информации (размеров изображений, их светотехнических характеристик, цветового тона и цвето­вого контраста).

На оценку и переработку информации влияют такие факторы, как способ кодирования информации, объем ее отображения, динамика смены информации, соответствие ее возможностям памяти и мышления оператора. Эффективность принятия решения определяется сле­дующими факторами: типом решаемой задачи, числом и сложностью проверяемых логических условий, слож­ностью алгоритма и количеством возможных вариантов решения.

Выполнение управляющих движений зависит от числа органов управления, их типа и способа размещения, а также от большой группы характеристик, определяющих степень удобства работы с отдельными органами управления (раз­мер, форма, сила сопротивления и т.д.).

Первые два этапа в совокупности называют иногда получением информации, последние два этапа — ее реа­лизацией. Из проведенного описания видно, что получение информации включает в себя как бы два уровня, поскольку текущая информация передается оператору через систему технических устройств. Он, как правило, не имеет возмож­ности непосредственно наблюдать за объектом управления (во всяком случае эта возможность ограничена), а полу­чает необходимую информацию со средств отображения в закодированном виде. С их помощью формируется ин­формационная модель объекта управления.

 Поэтому на первом уровне получения информации про­исходит восприятие оператором информационной модели, т. е. восприятие физических явлений, выступающих в роли носителей информации (положение стрелки на шкале из­мерительного прибора, комбинация знаков на экране элек­тронно-лучевой трубки, мигание лампочки, звук и т. п.). После этого на втором уровне осуществляется декодиро­вание воспринятых сигналов и формирование на этой ос­нове некоторой «умственной картины» управляемого про­цесса и условий, в которых он протекает. Такую «умствен­ную картину» в инженерной психологии принято называть концептуальной моделью '. Она дает возможность опера­тору соотнести в единое целое различные части управляе­мого процесса и затем на основе принятого решения осу­ществить эффективные управляющие действия, т. е. пра­вильно реализовать полученную информацию.

Деятельность оператора, как отмечалось в начале дан­ного параграфа, имеет целый ряд специфических особен­ностей. Поэтому успешное ее выполнение предполагает определенный уровень развития психических процессов. Основными из них являются восприятие, внимание, па­мять, представление и др..

До сих пор нами рассматривались общие черты деятель­ности оператора. Однако наряду с ними можно выделить и различные виды операторского труда, каждый из кото­рых характеризуется своими частными особенностями.

Оператор-технолог непосредственно включен в техно­логический процесс. Он работает в основном в режиме немедленного обслуживания. Преобладающими в его дея­тельности являются управляющие действия. Выполнение действий регламентируется обычно инструкциями, которые содержат, как правило, почти полный набор ситуаций и решений. К этому виду относятся операторы технологиче­ских процессов, автоматических линий, операторы по при­ему и переработке информации и т. п.

Оператор-наблюдатель (контролер) является класси­ческим типом оператора, с изучения деятельности которого и началась инженерная психология. Важное значение для деятельности такого оператора имеют информационные и концептуальные модели, а также процессы принятия решения. Управляющие действия контролера (по сравне­нию с оператором первого типа) несколько упрощены. Опе­ратор-наблюдатель может работать в режиме отстрочен­ного обслуживания. Такой тип деятельности является мас­совым для систем, работающих в реальном масштабе времени (операторы радиолокационной станции, диспет­черы на различных видах транспорта и т.д.).

Оператор-исследователь в значительно большей сте­пени использует аппарат понятийного мышления и опыт, заложенные в концептуальную модель. Органы управле­ния играют для него еще меньшую роль, а «вес» информа­ционных моделей, наоборот, существенно увеличивается. К таким операторам относятся пользователи вычислитель­ных систем, дешифровщики различных объектов (обра­зов) и т. д.

Оператор-руководитель в принципе мало отличается от предыдущего типа, но для него механизмы интеллектуаль­ной деятельности играют главенствующую роль. К таким операторам относятся организаторы, руководители раз­личных уровней, лица, принимающие ответственные реше­ния в человеко-машинных комплексах и обладающие инту­ицией, знанием и опытом.

Для деятельности оператора-манипулятора большое значение имеет сенсомоторная координация (например, непрерывное слежение за движущимся объектом) и мотор­ные (двигательные) навыки. Хотя механизмы моторной деятельности имеют для него главенствующее значение, в деятельности используется также аппарат понятийного и образного мышления. В функции оператора-манипуля­тора входит управление роботами, манипуляторами, ма­шинами-усилителями мышечной энергии человека (станки, экскаваторы, транспортные средства и т. п.).

Рассмотренные ранее общие психологические качества операторов и степень их проявления могут теперь быть дифференцированы в зависимости от вида деятельности оператора. Так, оператору-руководителю в первую очередь необходимы: высокая помехоустойчивость при восприятии слуховой и зрительной информации; способность к аб­страктному мышлению, обобщению, конкретизации, мыш­лению вероятностными категориями; критичность мыш­ления.

В отличие от этого требования к оператору-манипуля­тору будут иные. К ним относятся: высокая чувствитель­ность и помехоустойчивость при восприятии различных видов информации, способность к устойчивой моторной ра­боте в максимальном темпе, высокая мышечно-суставная чувствительность.

Аналогичные требования могут быть разработаны и для операторов других типов. Все их нужно учитывать при проектировании деятельности и профессиональном отборе операторов.


III. Заключение.

Инженерная психология, являющаяся особой науч­ной дисциплиной, пограничной для технических и психо­логических наук, возникла как ответ на нужды научно-технического прогресса. Ее объектом являются системы «человек — машина», а предметом — процессы информа­ционного взаимодействия человека и техники.

Создание новых образцов техники и новых техноло­гических процессов неизбежно сопровождается измене­ниями требований к человеку как субъекту труда; изме­няются орудия и условия труда, формируются новые виды трудовой деятельности. Каждый новый шаг в развитии техники и технологии порождает и новые проблемы, тре­бующие инженерно-психологического исследования. Это значит, что инженерная психология есть наука непрестанно развивающаяся. Ее развитие органически связано с научно-техническим прогрессом. С ходом научно-техни­ческого прогресса роль инженерной психологии возра­стает.

В современном обществе инженерная психоло­гия, как и все другие науки, поставлена на службу чело­веку труда. Главная задача инженерной психологии — это разработка оптимальных методов и средств разреше­ния противоречий между технологическими процессами и техникой, с одной стороны, и трудовой деятельностью человека — с другой, возникающих в процессе развития производства. Ее цель — повышение производительности труда путем гуманизации техники и технологии.


Список литературы.


1. Основы инженерной психологии. / под ред. Ломова. М 1986г.

2. А.Н. Леонтьев / Лекции по общей психологии. / М. 2000г.


Информация о работе «Система человек-машина»
Раздел: Психология
Количество знаков с пробелами: 45302
Количество таблиц: 1
Количество изображений: 1

Похожие работы

Скачать
24764
1
0

... их в жизнь. Суть их заключается в следующем. 1.         Конечным, выходным результатом инженерно-психологических разработок должно быть получение и оптимизация обобщенных показателей деятельности оператора и системы "человек - машина", и прежде всего таких, как эффективность, надежность, точность, быстродействие и др. При этом следует иметь в виду, что стабильные и высокие значения этих ...

Скачать
9972
1
1

... предприятием стратегии функционирования. 2. Эффективность принятых решений невозможно оценить без применения математического аппарата и программного обеспечения [5]. Одним из методов принятия решения является выработка решений в диалоге «человек-машина» представляет собой многократное чередование эвристических (выполняемых человеком) и формализованных (выполняемых ЭВМ) этапов. В процессе ...

Скачать
90783
3
17

... исследования и разработки в области создания автоматизированных систем управления наземным (автомобильным) транспортом ATMS (Advanced Traffic Management System). 3. Обзор программных средств для разработки человеко-машинного интерфейса В настоящее время на рынке существует множество SCADA систем, но но речь пойдёт о более популярных. Первая такая система - это SIMATIC WinCC. SCADA система ...

Скачать
12721
0
4

... системами. Рис.1. Система управления Рис.2. Система обнаружения-контроля а) Замкнутая сервосистема б) Аналогия слежения, осуществляемая оператором Рис.3. Сервосистема В настоящее время системы «человек-машина» в связи с развитием технических средств всё более и более превращается из систем контроля в системы управления, в которых человек-оператор занимает доминирующее ...

0 комментариев


Наверх