2.1 Резонансные свойства полости Земля - ионосфера

Впервые сферическая полость, образованная поверхностью Земли и нижней кромкой ионосферы, была рассмотрена в качестве резонансной системы в работе [72]. Были получены резонансные частоты, связанные с интерференцией волн, обежавших вокруг Земли, и лежащие в диапазоне единиц - десятков герц. Соответствующие "продольные" резонансы, названные впоследствии глобальными или шумановскими, были обнаружены в спектрах естественных СНЧ полей, возбуждаемых в полости Земля-ионосфера разрядами молний [40].

В работе [7] была высказана идея о наблюдении поперечных резонансов (ПР), которые в отличие от шумановских обусловлены последовательными отражениями волн от верхней и нижней границ полости и поэтому определяются ее высотой h . Значения собственных частот ПР лежат в области единиц килогерц.

В предположении об идеально проводящей Земле радиуса a и изотропной ионосфере радиуса d , характеризующейся поверхностным импедансом d , в [20] получено следующее дисперсионное соотношение, определяющее собственную частоту резонансных колебаний TM-типа для n-й зональной гармоники: экспоненциальными асимптотиками. В этом случае (2.1.1) примет вид, совпадающий с дисперсионным уравнением для плоской системы [33]:

Различие между плоской и сферической системами состоит в том, что в сферической системе существует дискретный набор углов q , определяемый номером зональной гармоники, в то время, как в плоской системе угол падения волн Бриллюэна на границы может принимать произвольные значения. Собственные частоты поперечного резонанса определяются: высотой ионосферы h, количеством вариаций поля p вдоль высоты, углом падения волн q на границу, поверхностным импедансом ионосферы d (Землю можно считать идеально проводящей).

Решение уравнения (2.1.2) дает частоты ПР в сферической полости Земля - ионосфера, совпадающие с собственными частотами плоской системы при соответствующих углах падения q [34] :

В случае небольших углов падения данные решения описывают и сферическую систему. Малость углов q означает небольшие номера зональных гармоник ( n+[-]<< ka _ 200). Для этого случая и при условии малости d ( d<<cosq )

Возбуждение полости Земля - ионосфера точечным источником было рассмотрено в [34]. В этой работе приведены разложения полей от элементарных электрического и магнитного диполей горизонтальной и вертикальной ориентации, полученные методом нормальных волн в моделях плоской и сферической полости при учете анизотропии ионосферы.

Временная форма сигнала наглядно интерпретируются лучевой или отражательной моделью отклика промежутка Земля - ионосфера на возбуждение точечным импульсным источником (см. напр. [80]). В плоском волноводе с идеально проводящими стенками последовательные отражения излученного импульса от границ можно представить набором синфазно излучающих виртуальных (отраженных) источников как показано на Рис. 2.1. Расстояние между m - тым источником и наблюдателем L определяет дискретный набор углов прихода q и взаимных задержек импульсов, формирующих временную форму сигнала в точке наблюдения.

Оценим зависимость мгновенной частоты принимаемого сигнала от времени. Эта зависимость напоминает гиперболу при малых t и асимптотически приближается к частоте отсечки волновода при стремлении t к бесконечности. Выражение (2.1.14) широко используется для интерпретации дисперсионных свойств "твиков" ~см. напр. [80]` и достаточно хорошо согласуется с экспериментальными данными.

Из рассмотренной модели видно, что при достаточно больших задержках относительно начала атмосферика мгновенная частота сигнала стремится к частоте отсечки волновода или к собственной частоте поперечного резонанса. Следовательно, отбрасывая начальную часть сигнала, формируемого в полости Земля ионосфера прямой волной, идущей от молнии параллельно границам, мы можем считать, что "хвостовая" часть сигнала характеризует поперечный резонанс, соответствующий многократному отражению волн от земли и ионосферы ~q стремится к 0 в формуле 2.1.6`. В этом случае, измеряя спектр хвостовой части импульса, можно оценить добротность поперечного резонанса (по отношению резонансной частоты к ширине резонансного пика) и эффективные параметры нижней ионосферы. При этом нужно принять во внимание особенности возбуждения резонансной системы, обсуждаемые ниже.

Поскольку в рассматриваемой нами модели используются точечные источники, при определении добротности необходимо учитывать геометрическую расходимость формируемых волн, а также диаграммы направленности излучения виртуальных источников. Отсекая начальную часть сигнала, мы рассматриваем волны, пришедшие от виртуальных источников высокого порядка. Из этого предположения следует:

1)  Если волны от всех источников приходят под углами близкими к вертикали, то углы в диаграмме направленности элементарного электрического диполя почти не изменяются, а амплитуда приходящих волн остается практически постоянной (исключение составляет вертикальный электрический диполь, но такой источник не возбуждает ПР, см. [34]);

2)  затухание, вызванное расходимостью, является малым, кроме того его можно учесть при оценке добротности.

Пусть амплитуда резонансного колебания имеет следующую зависимость от времени и расстояния до источника:

Отмеченные особенности не учитывались в работе [24], где анализ проводился по полной реализации твика, поэтому описанная выше методика оценки добротности, представляется более обоснованной.


Информация о работе «Экспериментальное исследование распространения атмосфериков и динамики мировой грозовой активности»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 121387
Количество таблиц: 1
Количество изображений: 0

0 комментариев


Наверх