1.4 Фильтры нижних и верхних частот

Фильтры нижних и верхних частот применяются в приемном тракте, предназначенном для анализа атмосфериков, с целью подавления сигналов помех, частота которых лежит за пределами рабочего диапазона. В области частот ниже 1 кГц помехи представлены излучением на частотах гармоник силовой промышленной электросети. В области частот выше 10 кГц - сигналами навигационных и радиовещательных радиостанций СДВ - ДВ диапазонов.

При создании аппаратуры для исследования вертикальной электрической компоненты электромагнитного поля атмосфериков в качестве ФВЧ и ФНЧ были выбраны активные фильтры второго порядка, которые обладают крутизной спада модуля амплитудно-частотной характеристики за полосой пропускания равной 12 дБ/окт. С помощью фильтров наиболее мощная помеха от силовой сети частотой 50 Гц была подавлена почти на 50 дБ, а также существенно ослаблены помехи от навигационных станций СДВ диапазона, что позволило привести динамический диапазон сигнала в соответствие с параметрами использовавшегося для регистрации магнитографа НО-62.

При использовании цифровой обработки принятых сигналов производится их преобразование к числовой последовательности ~дискретизация`. В соответствии с теоремой Котельникова, частота дискретизации должна превышать удвоенное значение максимальной частоты составляющие которой присутствуют в сигнале. Чтобы ограничить спектр сигнала, его пропускают через фильтр нижних частот. Важную роль для уменьшения ~исключения` искажений за счет наложения спектра при дискретизации и цифровой обработке в ЭВМ играют параметры фильтра нижних частот. Поскольку реальный фильтр обладает не бесконечной крутизной спада АЧХ (такой фильтр физически нереализуем), необходимо учитывать присутствие в сигнале частотных составляющих, лежащих выше частоты среза ФНЧ.

При конструировании универсального аналого-цифрового комплекса частота дискретизации в аналого-цифровых преобразователях была выбрана равной 100 кГц при верхней границе рабочего частотного диапазона, равной 13 кГц. Достаточно высокое значение частоты дискретизации позволило практически исключить погрешность аналого-цифрового преобразования, вызванную наложением частот “фолдингом” в спектре и применить ФНЧ невысокого порядка, более простого в настройке, более стабильного по параметрам и, что важно для измерения азимутов, вносящего меньшие фазовые искажения. В качестве фильтров верхних и нижних частот были выбраны фильтры Баттерворта 6-го порядка, обеспечивающие затухание вне полосы пропускания равное 36 дБ/окт. При проектировании фильтров применялись схемы звеньев на операционных усилителях и методики расчета, приведенные в [25].

1.5 Комплекс аппаратуры для исследования вертикального электрического поля СДВ-атмосфериков

Комплекс предназначен для регистрации и спектральной обработки вертикальной компоненты электрического поля СДВ атмосфериков. В его состав входят:

·  вертикальная электрическая антенна, представляющая собой изолированный металлический диск диаметром 30 см., установленный на мачте высотой 3 м.

·  широкополосный антенный усилитель с входным сопротивлением около 6 МОм и динамическим диапазоном не менее 60 дБ,

·  фильтры верхних и нижних частот с частотами среза соответственно 1 и 10 кГц и затуханием 12 дБ/окт.,

·  магнитограф НО-62.

Блок-схема и передаточная характеристика всего приемо - регистрирующего тракта, которая контролировалась через эквивалент антенны, приведены на Рис. 1.6. и 1.7.

Прием и регистрация сигналов происходила следующим образом. Сигнал с антенны через интегрирующую RC цепь, поступал на антенный усилитель. С выхода антенного усилителя по экранированному кабелю, длиной около 50 м, сигнал подавался на фильтры верхних и нижних частот, настроенные соответственно на 1 и 10 кГц.

Между выходом кабеля и входом полосового активного фильтра была включена интегрирующая RC-цепь аналогичная цепи, установленной на входе антенного усилителя. Отфильтрованный и усиленный до необходимого уровня сигнал записывался на магнитограф НО-62 в режиме прямой записи, который обеспечивал требуемую полосу частот и динамический диапазон не менее 40 дБ.

Спектральная обработка записей, выполненных на магнитографе НО-62, проводилась с помощью спектроанализатора СК4- 72/2. Для обработки импульсов совместно с анализатором спектра использовалось устройство задержки остановки записи.

Это устройство позволяет регулировать положение атмосферика относительно начала анализируемой временной реализации, при этом сохраняется его передний фронт и предысторию импульса. Кроме этого, появляется возможность очистить от помех часть реализации, хранящейся в памяти СК4-72, не занятую анализируемым импульсом.


1.6 Универсальный аналого-цифровой комплекс для исследований многокомпонентных импульсных полей СНЧ-СДВ диапазонов

При создании универсального аналого-цифрового комплекса была поставлена задача высокоскоростного трехкомпонентного анализа импульсных полей СНЧ-СДВ диапазонов. Известный анализатор спектра СК4-72, обеспечивает параллельный спектральный анализ сигналов в полосе частот от 0 до 20 кГц, при этом разрешение по частоте в диапазоне 100 Гц - 20 кГц равно 100 Гц. СК4-72 обеспечивает достаточно высокое быстродействие и широкие возможности по обработке сигналов, например: различные виды усреднения спектров и сигналов, определение их параметров, возможность сопряжения с электронно-вычислительной машиной. Однако использование этого прибора для одновременного анализа нескольких компонент поля исключено, поскольку связано с необходимостью установки отдельного комплекта для каждой компоненты. В последнее время стали доступны персональные ЭВМ, обладающие высоким быстродействием, такие, как “Электроника –85” ~PDP-11`, IBM PC XT/AT, а также высокоскоростные аналого-цифровые преобразователи. В связи с этим оказалось возможным создание мобильной аппаратуры для регистрации и цифрового анализа электрических сигналов в диапазоне частот вплоть до десятков и сотен килогерц.

В данном параграфе описан комплекс аппаратуры, предназначенный для приема, регистрации, ввода в ЭВМ и цифровой обработки сигналов вертикальной электрической и двух горизонтальных магнитных компонент импульсного электромагнитного поля СНЧ-СДВ диапазонов по трем каналам одновременно. Функциональная схема комплекса представлена на Рис. 1.8. В состав аппаратно-программного комплекса входят:

1)  вертикальная электрическая антенна*

2)  две магнитные экранированные воздушные рамочные антенны*

3)  широкополосные антенные усилители для каждой из антенн;

4)  трехканальный тракт полосовых фильтров; в состав каждого канала входят:

·  фильтр Баттерворта верхних частот 6-го порядка с крутизной затухания за пределами полосы пропускания 36 дБ/окт.;

·  фильтр Баттерворта нижних частот 6-го порядка, с крутизной затухания за пределами полосы пропускания 36 дБ/окт.;

·  масштабирующий усилитель со ступенчатой регулировкой коэффициента усиления*

·  двенадцатиразрядный АЦП типа Ф4223 в каждом канале*

5)  цифровое буферное устройство , служащее для запоминания трех компонент сигнала в виде последовательности цифровых отсчетов, визуального контроля их временной формы на экране осциллографа и передачи цифровых реализаций через последовательный или параллельный порт в ЭВМ*

6)  ПЭВМ @ Электроника - 85 @ *

7)  комплекс программ, написанных на Ассемблере и Фортране, обеспечивающих ввод данных и их обработку в ЭВМ в реальном времени.

Технические и эксплуатационные характеристики комплекса следующие:

·  полоса частот принимаемых сигналов: 0.3 - 13.0 кГц*

·  пределы ступенчатой регулировки усиления одновременно по трем каналам: 0 - 48 дБ с дискретностью 6 дБ*

·  динамический диапазон во всех каналах: не хуже 66 дБ*

·  различия в АЧХ и ФЧХ между каналами не превышают соответственно 2 дБ и 3 градусов (см. ниже).

·  частота дискретизации % 100 кГц*

·  длительность запоминаемой цифровой реализации по каждому каналу % 40.96 мсек;

Режим работы комплекса - ждущий. Запись информации происходит при превышении сигналом в канале электрической компоненты заданного порога . После записи в память буферного устройства временные формы трех компонент принятого сигнала контролируются одновременно с помощью осциллографа. После принятия решения оператором сигнал или стирается, или передается в память ЭВМ. Предусмотрен также автоматический режим, при котором каждый принятый сигнал передается в ЭВМ без предварительной визуальной оценки. Информация в виде файлов, содержащих цифровые реализации трех компонент импульса или результаты обработки накапливается на гибких магнитных дисках или на жестком магнитном диске типа @ Винчестер @.

Измерение фазо-частотных характеристик проводилось с помощью фигур Лиссажу в два этапа. Сначала с помощью имитаторов поля были получены фазовые характеристики каждой из антенн вместе с антенными усилителями (для магнитных антенн применялся соленоидальный излучатель, а для электрической антенны - электрический излучатель). Поскольку частота среза электрической антенны лежит вблизи 80 Гц, а магнитной - около 200 Гц, в рабочем диапазоне частот приемника заметные фазовые искажения не наблюдались. Затем производились измерения разности фаз между отдельными каналами приемника. Оказалось, что взаимные отклонения сосредоточены вблизи частот среза ФВЧ и ФНЧ, достигая 3 (между Е - и Н - каналами в окрестности 10 кГц, где максимальны отличия и в АЧХ, см. рис 1.9).

Фазовые невязки каналов могут сыграть заметную роль при проведении узкополосных измерений, если же используется широкополосная методика, то их влияние существенно ослабляется. В настоящей диссертации (см. Гл.3) компоненты E- и H-полей применяются попарно при вычислении интегральных проекций вектора Умова-Пойнтинга P = E K H (пеленгование источников). Очевидно, что фазовые невязки Dv(f) обусловят относительную погрешность измерения проекций вектора P , равную на фиксированной частоте:


,

где  - разность фаз между каналами E и H. Поскольку в предложенной нами широкополосной методике измерений проводится интегрирование по частоте, результирующая погрешность составит:

,

Эта погрешность оценивается сверху при  =  = const величиной

На самом деле фазы отличаются в узких полосах вблизи частот среза приемника, поэтому справедлива более реалистичная оценка:

где F - полная полоса рабочих частот приемного тракта, а dF - область частот, где наблюдаются фазовые искажения.

Таким образом, измеренное значение  = 3, дает верхнюю оценку относительной погрешности 0.13 %, (порядка погрешности квантования по амплитуде), а более реалистическая оценка с учетом полосы частот оказывается на порядок меньшей.

Приведенные оценки позволяют в дальнейшем исключить из рассмотрения влияние фазовых невязок широкополосных каналов.

Основным предназначением цифровой части приемного устройства является преобразование выделенных аналоговых сигналов в последовательность цифровых отсчетов, обеспечение визуального контроля временных форм зарегистрированных импульсов и ввод в ЭВМ, где производится их обработка.

При разработке функциональной схемы цифровой части приемника принимались во внимание параметры исследуемых сигналов, условия, накладываемые на частоту дискретизации и быстродействие портов ввода-вывода ЭВМ @Электроника-85@. Поскольку частота квантования была выбрана равной 100 кГц, а число каналов, по которым ведется одновременная регистрация равно трем, суммарная скорость ввода информации в ЭВМ должна превышать 300 кГц. Это оценка минимального быстродействия, т.к. мы не учли, что кроме ввода необходимо в реальном времени проводить простейшую обработку ~сравнение текущего отсчета с пороговым значением и т. п.`. Такое быстродействие не обеспечивается стандартными каналами ввода-вывода использовавшейся ЭВМ @Электроника-85@. Чтобы согласовать по быстродействию выходные сигналы АЦП и порты ввода-вывода, была выбрана схема с буферизацией входного потока цифровых данных. Буферное устройство выполняет следующие функции:

·  - вырабатывает импульсы запуска АЦП*

·  - после срабатывания компаратора запоминает во внутренней памяти в цифровом виде три временные реализации длиной 4096 12-тиразрядных отсчетов в двоично-дополнительном коде*

·  - обеспечивает сохранение "предыстории" импульсов* длительность которой регулируется в пределах от 0 до 15/16Т, где Т- длительность всей реализации*

·  - обеспечивает вывод записанных в памяти сигналов на экран осциллографа с целью их визуального контроля*

·  - обеспечивает передачу информации в ЭВМ по стандартным параллельному ~ИРПР` или последовательному ~RS-232` интерфейсам*

·  - с помощью встроенных часов - календаря фиксирует полную информацию о времени с точностью до десятков миллисекунд и дате в момент прихода импульса, которая служит для идентификации каждого атмосферика;

·  - в режиме визуального контроля, после принятия решения оператором по виду временных реализаций, которые непрерывно выводятся на экран осциллографа, информация или передается в ЭВМ, или стирается из буферной памяти, после чего устройство переходит в режим ожидания прихода следующего импульса;

·  - в автоматическом режиме обеспечивает передачу в ЭВМ каждого импульса, по которому произошло срабатывание компаратора.

1.7 Основные результаты и выводы главы

1.  Выбраны типы и параметры антенн ~емкостной электрический зонд и магнитная воздушная рамка), схемы антенных усилителей и приемных устройств, обеспечивающих :

·  полосу 0.3 - 13 кГц,

·  усиление до 50 дБ,

·  неравномерность АЧХ не более 2 дБ,

·  различие между фазовыми характеристиками каналов не более 3 градусов.

2.  Оригинальная методика оценки эффективной площади магнитных антенн с ферромагнитным сердечником, учитывающая реальные конструкции антенн и позволила выработать рекомендации по выбору типа сердечника антенны (ферромагнитный или воздушный).

3.  Была предложена и реализована простая схема антенного усилителя, обеспечивающего действительный коэффициент передачи приемного устройства по магнитному полю, что позволило исключить фазовые и частотные искажения, присущие индукционным магнитным антеннам, в широкой полосе частот.

4.  Разработанные комплексы аппаратуры были изготовлены, настроены и откалиброваны в полевых условиях. Они показали высокую работоспособность и использовались в сухопутных и длительных непрерывных морских измерениях, предварительном анализе и записи для последующей обработки трех (вертикального электрического и двух взаимно перпендикулярных магнитных ) компонент естественных атмосферных электромагнитных импульсных полей СНЧ-СДВ диапазона.


ГЛАВА 2. Обнаружение и экспериментальное исследование поперечных резонансов волновода земля-ионосфера

Существование поперечных резонансов ~ПР` полости Земля- ионосфера обсуждалось ранее в ряде теоретических [67, 7, 26] и экспериментальных [71, 3] работ. В работе [67] приведено решение задачи о возбуждении волновода Земля-ионосфера падающей из космоса плоской электромагнитной волной. Полученные спектры имели резонансные максимумы, частоты которых определялись высотой промежутка, параметрами верхней стенки и углом падения волны.

В экспериментальной работе [71] приземной волновод возбуждался токами, порожденными в нижней ионосфере мощным модулированным коротковолновым излучением наземного передатчика за счет нелинейных процессов в плазме. Частота модуляции сканировалась в пределах от 1 до 7 кГц, при этом спектры принимаемого на Земле поля имели характерные максимумы на частотах 2, 4, 6 кГц, которые интерпретировались авторами как поперечные резонансы.

Одним из методов исследования распространения радиоволн СДВ диапазона в полости Земля-ионосфера является использование естественных широкополосных источников излучения, (грозовых разрядов), порождающих атмосферики. В настоящей работе атмосферики, распространяющиеся под ионосферой, применяются для экспериментального изучения ПР, а также поляризации электромагнитного поля, формируемого в волноводе излучением молний. Расчеты спектров ПР, возбуждаемых вертикальными и горизонтальными источниками, находящимися внутри волновода, проводились в работах [26, 32]. Как показали эти расчеты, спектры вынужденных колебаний, создаваемых точечным импульсным источником в плоском промежутке Земля-ионосфера, имеют сложный вид, в частности, тонкая структура спектральных максимумов зависит от расстояния молния - наблюдатель. Одним из возможных способов выделения ПР может служить накопление энергетических спектров процесса, которое является регуляризирующей процедурой, приводящей их к некоторым средним значениям. Данная методика используется в настоящей работе.

Как проявление ПР в спектре отдельного атмосферика, в [24] обсуждался "твик" - квазисинусоидальный сигнал, которому предшествует отражательный атмосферик, длительностью от нескольких десятков до ста миллисекунд и выше. Твики наблюдаются только ночью, или при солнечных затмениях [70]. Обычно измерения твиков проводились с помощью аналоговых сонографов с целью изучения их дисперсии [80], определения затухания волн в волноводе [61]. В работе [24] были оценены параметры нижней ионосферы в предположении о резонансной природе твиков. Поляризационные особенности электромагнитного поля твиков исследовались в работе [12], в которой по результатам измерений вертикальной электрической и двух взаимно ортогональных горизонтальных магнитных компонент в северном полушарии был сделан вывод о левой эллиптической поляризации хвостовой части твиков. Этот результат свидетельствует о существенной гиротропии ионосферной стенки волновода. Попытки объяснить особенности твиков были сделаны в ряде теоретических работ. Расчеты проводились как без учета магнитного поля Земли, так и в упрощенной модели с вертикальным магнитным полем Земли [79,12]. В работе [16] приводятся результаты численного расчета коэффициентов распространения и затухания волноводных мод ночных атмосфериков, возбуждаемых вертикальным молниевым разрядом. Учитывалось наклонное постоянное магнитное поле Земли (случай приэкваториального распространения) и было показано, что затухание ТЕ-волн больше чем ТМ-волн при распространении с запада на восток и меньше - в противоположном направлении.

В настоящей главе будут представлены результаты экспериментальных исследований ПР, наблюдавшихся в средних и единичных спектрах атмосфериков. Рассмотрены также поляризационные свойства атмосфериков. Полученные экспериментальные данные позволяют указать оптимальные способы обработки атмосфериков и сформулировать подходы к решению обратной задачи электродинамики.


Информация о работе «Экспериментальное исследование распространения атмосфериков и динамики мировой грозовой активности»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 121387
Количество таблиц: 1
Количество изображений: 0

0 комментариев


Наверх