1.3 Антенный усилитель для магнитной антенны

Не менее важным требованием к датчику магнитного поля при измерении импульсов является передача сигналов без искажения их временной формы. При отсутствии ~или малости` нелинейных искажений форма сигнала зависит от частотных искажений, определяемых свойствами комплексного коэффициента передачи приемного тракта. Частотные искажения в индукционной соленоидальной антенне обусловлены тем, что Э.Д.С., возникающая в ней, пропорциональна производной по времени от индукции падающего магнитного поля:

Э.Д.С. = - K -- cosq , ~1.3.1`

где B - индукция магнитного поля, K - постоянный коэффициент, зависящий от числа витков катушки и конструкции магнитной антенны, q - угол между вектором магнитной индукции и нормалью к плоскости намотки МА. Э.Д.С., возбуждаемая в антенне на фиксированной частоте равна:

Э.Д.С. = iw K B cosq, (1.3.2)-

где w - круговая частота колебаний, i - мнимая единица; зависимость от времени предполагается вида exp(-iwt). Мы видим, что Э.Д.С. на выходе МА нарастает линейно с ростом частоты, а мнимая единица описывает фазовый сдвиг Э.Д.С. на 90 по отношению к падающему магнитному полю. Эквивалентом магнитной антенны на низких частотах служит дифференциальная цепь первого порядка. Чтобы скомпенсировать линейное нарастание с частотой модуля коэффициента передачи и постоянный фазовый сдвиг на 90 во всей области рабочих частот относительно падающего магнитного поля, применяются разнообразные достаточно сложные конструктивные и схемотехнические методы [29, 1].

Нами была предложена и реализована простая схема антенного усилителя магнитной антенны, обеспечивающего постоянство амплитудно-частотной характеристики ~АЧХ` и устранение фазового сдвига на 90 фазо-частотной характеристики ~ФЧХ` сквозного тракта "антенна - антенный усилитель" по полю в широком диапазоне частот. Это необходимо для передачи сигналов без искажений формы. Принципиальная схема устройства, за основу которой взят усилитель тока ~ см. например [13] ` , приведена на Рис. 1.3. Здесь использованы следующие обозначения:

   МА - магнитная антенна;

   R - сопротивление обратной связи;

   R - активное сопротивление обмотки;

   C - паразитная межвитковая емкость;

   А1 - операционный усилитель.

Проанализируем работу данной схемы. Магнитная антенна ~МА` подключена ко входу операционного усилителя, который работает в режиме усиления тока, что достигается за счет введения отрицательной обратной связи через сопротивление R, за счет которой на инвертирующем входе поддерживается потенциал, равный потенциалу неинвертирующего входа, т. е. нулю. С другой стороны, потенциал инвертирующего входа образуется суммой втекающего во входную цепь и вытекающего через сопротивление обратной связи токов. Эти токи должны быть равны по величине и противоположны по знаку. Входной ток циркулирует в контуре, образованном короткозамкнутой катушкой МА с индуктивностью L .

i = Э.Д.С./Z , (1.3.3)

где Z = iwL - комплексное сопротивление МА. Подставив выражения для Э.Д.С. (1.3.2) и Z в формулу для входного тока (1.3.3), получим, что ток в короткозамкнутой МА пропорционален индукции падающего магнитного поля и не зависит от частоты:

i = iw K B cosq/iwL = K B cosq/L

Выходное напряжение найдем из условия равенства втекающего и вытекающего токов на инвертирующем входе операционного усилителя:

i = U /R = - i .


Отсюда получаем

U = -R K B cosq/L.

Следовательно, коэффициент передачи устройства по полю равен:

K = U / B = -R K cosq/ L . (1.3.4)

Как видно из полученного выражения, коэффициент передачи устройства по магнитному полю действителен и не зависит от частоты. Это значит, что АЧХ устройство равномерна, а вносимый фазовый сдвиг на всех частотах равен 180 градусам.

Полученный результат справедлив в случае, если компоненты антенного усилителя и магнитная антенна обладают идеальными характеристиками. В действительности такие параметры, как паразитные емкости МА, конечное активное сопротивление намоточных проводов, конечный коэффициент усиления операционного усилителя ограничивают диапазон частот, в котором остается справедливым равенство ~1.3.4`.

Рассмотрим влияние конечного активного сопротивления МА на коэффициент передачи устройства. Полный коэффициент передачи по полю в этом случае записывается в следующем виде:

KB = - Rjc K cosq iw/ (Ra + iwL).

При wL . Ra мы получаем коэффициент передачи для идеального случая (1.3.4). При wL , Ra коэффициент передачи по полю пропорционален частоте входного сигнала:

KB = Rjc cosq iw/ Ra.


Отсюда видно, что величина активного сопротивления, включенного последовательно с МА определяет нижнюю частоту среза устройства.

Теперь рассмотрим влияние паразитной емкости МА на коэффициент передачи устройства. Напряжение на выходе МА равно:

Uc = Э.Д.С./(1-w LC `, ~1.3.5`

Коэффициент передачи устройства:

Uds[/Э.Д.С. = - Rjc/ Zrjyn, 1.3.6`

где Zrjyn - полное сопротивление контура во входной цепи.

Zrjyn = iwL / ( 1-w L C )

Подставляя выражения для Uc и Z в равенство ~1.3.6` получим

Uds[/ Э.Д.С. = - Rjc/iwL,

Данное выражение, с учетом (1.3.2), эквивалентно ~1.3.4), т.е. коэффициент передачи устройства не зависит от паразитной емкости. Полученный вывод можно было сделать из следующих простых соображений: поскольку на инвертирующем входе поддерживается нулевой потенциал, то через паразитную емкость C не текут токи смещения, и, следовательно, ее величина на коэффициент передачи не влияет.

Тем не менее, при конструировании реальных антенных усилителей следует учитывать что вследствие конечного быстродействия операционных усилителей паразитная емкость антенны может исказить коэффициент передачи на высоких частотах.

Схема усилителя для магнитной антенны, использовавшегося в измерениях приведена на Рис.1.4. Амплитудно-частотная характеристика тракта МА - антенный усилитель по полю, снятая с помощью соленоидального излучателя, представлена на Рис.1.5.


Информация о работе «Экспериментальное исследование распространения атмосфериков и динамики мировой грозовой активности»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 121387
Количество таблиц: 1
Количество изображений: 0

0 комментариев


Наверх