1.1 Сеточная область

Для построения разностной схемы необходимо построить сетку Gh-конечное множество точек, принадлежащих G, плотность распределения которых характеризуется параметрами h-шагом сетки. Пусть область изменения аргумента x есть отрезок G={0≤x≤1}. Разобьем этот отрезок точками xi=i∙h, i=0,n на n равных частей длины h=1/n каждая. Множество точек xi=i∙h, называется равномерной сеткой на отрезке 0≤x≤1 и обозначим ={xi=i∙h, i=0,n} , а число h-расстояние между точками (узлами) сетки называется шагом сетки. Разбиение отрезка 0≤x≤1 точками xi, i=0,n можно производить произвольным образом - 0<x1<…<xn-1<1. Тогда получаем сетку ={xi, i=0,n, x0=0, xn=1} c шагами hi=xi-xi-1, которое зависит от номера узла сетки. Если hi≠hi+1 хотя бы в одной точке, то сетка называется неравномерной и такую сетку обозначают ŵ. Точки x0 и xn назовем граничными узлами и обозначим их гh. Остальные узлы назовем внутренними и обозначим их wh. Узлы соседние с граничащими назовем приграничными. Тогда имеем

=whгh.

 

1.2 Сеточная функция. Пространство сеточных функций. Нормы сеточных функций

 

Функция y=y(xi) дискретного аргумента xiназывается сеточной функцией, определенной на сетке . Сеточные функции можно рассматривать как функции целочисленного аргумента, являющегося номером узла сетки, т. е. y=y(xi)=y(i). Далее мы будем писать y(xi)=yi.

Сеточная область wh зависит от параметра h. При различных значениях параметра h имеем различные сеточные области. Поэтому и сеточные функции yh(x) зависят от параметра h.

Функции u(x) непрерывного аргумента являются элементами функционального пространства H. Множество сеточных функций yh(x) образует пространство Hh. Таким образом, в методе сеток пространство H, заменяется пространством Hh сеточных функций yh(x).

Так как рассматривается множество сеток {wh}, то мы получаем множество {Hh} пространств сеточных функций, определенных на {wh}.

Пусть u(x) - решение исходной непрерывной задачи

Lu(x)=f(x), (1)

; yh- решение разностной задачи, . Для теории приближенных вычислений представляет большой интерес оценка близости u(x) и yh(x), но u(x) и yh(x) являются элементами из различных пространств. Пространство H отображается на пространство Hh. Каждой функции  ставится в соответствие сеточная функция yh(x), x wh, так что yh=Phu Hh, где Ph- линейный оператор из H в Hh. Это соответствие можно осуществить различными способами, т. е. зависит от выбора оператора Ph. Теперь, имея сеточную функцию uh, образуем разность yh-uh, которая является вектором пространства Hh. Близость yh и uh характеризуется числом yh-uhHh , где Hh – норма на Hh.

Соответствие функций u(x) и uh можно установить различными способами, например,

uh=u(x), x  wh.

В дальнейшем мы будем пользоваться этим способом соответствия.

В линейном пространстве Hh введем норму Hh, которая является аналогом нормы Н в исходном пространстве Н. Обычно принято выбирать норму в пространстве Hh так, чтобы при стремлении к нулю h она переходила в ту или иную норму функций, заданных на всем отрезке, т.е. чтобы выполнялось условие

Hh=H, (2)


где Н- норма в пространстве функций, определенных на отрезке, которому принадлежит решение.

Условие (2) называют условием согласования в пространствах Hh и Н.

Рассмотрим простейшие типы норм в Hh для случая сеток

wh={xi=i∙h} на отрезке 0≤x≤1.

1. Норма Hh=

удовлетворяет условию (2), если в качестве Н рассматривать пространство непрерывных функций с нормой

H=, H=[a,b],

а сеточную функцию определять в виде (2), т.е.

yh(x)=uh(x), x  wh

2. Норма Hh=

удовлетворяют условию (2), если за Н принять пространство непрерывных функций с нормой

H=u2(x)dx, H=C[a,b] ,

а сеточную функцию определять в виде

yh=uh(x), x  wh.



Информация о работе «Разностные схемы для уравнения переноса на неравномерных сетках»
Раздел: Информатика, программирование
Количество знаков с пробелами: 74851
Количество таблиц: 18
Количество изображений: 9

Похожие работы

Скачать
59485
4
20

... на первой  и последующих  итерациях равна: ; (3.22) . (3.23) Критерием завершения итерационного процесса является условие: ,(3.24) где  - заданная точность расчета [4]. 4. Методы оценки термонапряженного состояния 4.1 Физические основы возникновения термических напряжений При изменении температуры происходит объемное расширение или сжатие твердого тела. Неравномерный нагрев ...

Скачать
36871
3
34

... диаметрах критического сечения представлены на рисунке 2.24 Рисунок 2.24 - Зависимость оптимальной высоты поднятия фурмы от давления при различных диаметрах критического сечения сопла Лаваля 3. Численное исследование движения жидкости Приведены уравнения Навье - Стокса установившегося осесимметричного движения несжимаемой вязкой жидкости в переменных функция тока - вихрь. Проведено ...

Скачать
11306
2
0

... системы на ЭВМ, а так же требование его экономичности обуславливают применение регулярных сеток, расположение узлов в которых подчиняется определённым закономерностям. В практике численного моделирования микроэлектронных структур примеяются как непрерывные прямоугольные (неравномерные), так и треугольные сетки (рис.2.). Треугольная сетка позволяет с меньшим количеством дополнительных узлов сгущать ...

Скачать
243425
1
0

... . Реакции узлов более высокого уровня менее зависят от позиции и более устойчивы к искажениям. Структура Неокогнитрон имеет иерархическую структуру, ориен­тированную на моделирование зрительной системы челове­ка. Он состоит из последовательности обрабатывающих слоев, организованных в иерархическую структуру (рис. 10.8). Входной образ подается на первый слой и передается через плоскости, ...

0 комментариев


Наверх