2.5.8 Оптичний принцип запису та зчитування інформації

У лазерних дисководах CD-ROM і DVD-ROM використовується оптичний принцип запису і зчитування інформації. В процесі запису інформації на лазерні диски для створення ділянок поверхні з різними коефіцієнтами відбиття застосовуються різні технології: від простого штампування до зміни здібності відбивання ділянок поверхні диска за допомогою потужного лазера. Інформація на лазерному диску записується на одну спіралевидну доріжку (як на грамплатівці), що містить ділянки з різною здатністю відбиття. При дотриманні правил зберігання (у футлярах у вертикальному положенні) і експлуатації (без нанесення подряпин і забруднень) оптичні носії можуть зберігати інформацію протягом десятків років.

В процесі зчитування інформації з лазерних дисків промінь лазера в дисководі падає на поверхню диска, що обертається, і відбивається. Оскільки поверхня лазерного диска має ділянки з різними коефіцієнтами відбиття, то відбитий промінь також змінює свою інтенсивність (логічні 0 або 1). Потім відбиті світлові імпульси перетворяться за допомогою фотоелементів в електричні імпульси і по магістралі передаються в оперативну пам'ять.

2.5.9 CD і DVD-ROM

На цих накопичувачах використовується оптична система запису даних. Сам диск складається з дзеркальної поверхні, на якій є поглиблення. Диск опромінюється лазером, і залежно від наявності або відсутності, фотодіод уловлює або не уловлює відбите світло (рис. 2.23). Таким чином формуються одиниці і нулі.


Рисунок 2.23 – Схема зчитування даних з диска

Таблиця 2.2— Порівняльні характеристики CD та DVD дисків

Параметри CD DVD
Діаметр диска 120 мм 120 мм
Товщина диска 1.2 мм 1.2 мм
Структура диска Один шар Два шари по 0.6 мм
Довжина хвилі лазера 708 нм 650 і 635 нм
Числова апертура 0.45 0.60
Ширина доріжки 1.6 мкм 0.74 мкм

Довжина одиничного

 «поглиблення»

0.83 мкм 0.4 мкм
«Шарів» даних 1 1 або 2
Ємність Близько 680 мегабайт При одному шарі даних: 2*4.7 Gb, при двох – 2*8.5Gb

Зрозуміло, що розміри «поглиблень» повинні бути порівнянні з довжиною хвилі лазера, щоб в повній мірі виявлялися корпускулярні властивості світла, а хвильові себе практично не виявляли. Втім, це і виходить з таблиці 2.2.


2.5.10 Технологія Blu-Ray – наступник DVD

Так вже повелося, що еволюція в галузі комп'ютерних технологій відбувається швидше, ніж в решті технічних галузей. І з часом проміжок часу, за який потужність комп'ютера подвоюється, стає все менше і менше. До 1 ГГц процесори йшли 22 роки, а до 2 ГГц – всього лише півтора. Об'єм вінчестера росте як на дріжджах, 160-180 гігабайт – це вже повсякденність, адже зовсім недавно для досягнення таких об'ємів конструювалися цілі RAID-масиви з десятків жорстких дисків. Мініатюризація, збільшення швидкодії, швидкості передачі даних, збільшення щільності запису – ось що ми чуємо щодня, ось що з'являється щодня на сторінках новин Інтернету. Об'єми, швидкості, частоти – все це подвоюється, почетверяється, подесятиряється і все це нікого вже не дивує. Але є галузь, в якій на тлі успіхів на інших фронтах до останнього часу панував, здавалося б, повний застій. Це галузь змінних носіїв інформації.

Дійсно, в цій галузі, як і двадцять років тому продовжує лідирувати старичок CD-ROM. Правда, за ці роки він підріс з 650 Мб до 700 Мб, а завдяки старанням TDK місцями навіть і до 800 Мб, але, на жаль, в наше насичене інформацією століття такі об'єми стають явно недостатніми. Таким довгим життям CD-ROM зобов'язаний не в останню чергу форматам стиснення звуку (MP3) і відео (MPEG4, DivX), завдяки яким в такий мізерний об'єм стало можливим втиснути величезні масиви музики і цілі фільми. Звичайно, якість страждає, але народ у нас невимогливий і зрештою все одно виходить якіснішим і довговічнішим за переписані аудіо та відеокасети.

Останнім часом вимогливіша публіка відкрила для себе DVD (digital versatile disc). Саме останнім часом, хоча цьому формату налічується вже 8 років. Причин такого повільного просування багато. Спочатку на ринку панував дикий різнобій форматів DVD. Якщо у випадку з CD компанія-винахідник SONY чітко дала специфікації даного пристрою, яких дотримувалися всі виробники, то у випадку з DVD вийшло з точністю навпаки – кожний з виробників пропонував свою версію DVD-привода, з різним максимальним об'ємом носія, з різною механікою і навіть з різною довжиною хвилі зчитуючого лазера, що на початку частенько приводило до ситуації, коли на DVD приводі з 10 дисків читалися тільки один-два. На наступному етапі розповсюдження DVD стримуючим чинником стала, прямо скажемо, безглузда спроба приборкати піратство за допомогою введення зон. За декілька років експансії DVD диски з різних зон настільки перемішалися між собою, що стало проблематичним знайти диски саме під свій дисковод. До того ж миттєво в мережі Інтернет з'явилися зламані прошивки DVD-приводів і спеціальні програми, що очищують лічильники програних дисків. Досвідчені користувачі вирішили проблеми із зонами в обхід виробників, ну а недосвідчених ця проблема тільки відштовхнула від придбання DVD-привода. Не в останню чергу в повільному просуванні DVD зіграли висока вартість дисків і їх відносна рідкість.

Але поступово все стало налагоджуватися. Виробники самостійно стали знімати обмеження на зони з своїх приводів. Так, наприклад, програма PowerDVD повідомила про один DVD-привод NEC, який недавно вийшов, що "даний пристрій має номери зон 1, 2, 3, 4, 5". Приводи сталі сумісні, з'явилося щось схоже на єдиний стандарт. DVD фільми з'явилися в широкому продажу, їх почали навіть дублювати російській мовою. Ціна на диски впала. З'явилися піратські диски, які склали цінову конкуренцію (на жаль, тільки цінову, про якість говорити не доводиться) ліцензійним дискам. Користувачі, виявивши, що DVD-приводи не набагато дорожче за CD-ROM стали поступово купляти дані пристрої. З'явилися DVD-приводи, що пишуть, але за шалені гроші і відразу в особі трьох несумісних між собою форматів: DVD-RAM (Panasonic), DVD-RW (Pioneer) і DVD+RW (Philips). Нарешті для DVD з’явилось світле майбутнє. Але це майбутнє було стрімко перекреслено у лютому 2002 року синім променем – технологією Blu-Ray Disc.

Японія, Токіо, 19 лютого 2002... Представники дев'яти лідируючих високотехнологічних компаній Sony, Matsushita (Panasonic), Samsung, LG, Philips, Thomson, Hitachi, Sharp і Pioneer на сумісній прес-конференції оголосили про створення і впровадження нового формату оптичних дисків великої місткості під назвою Blu-Ray Disс, цим самим можливо підписавши смертний вирок DVD. Згідно оголошеної специфікації Blu-Ray Disс – перезаписуваний диск наступного покоління із стандартним CD/DVD розміром 12 см з максимальною місткістю запису на один шар і одну сторону до 27 Гб.

Назвати Blu-Ray (рис. 2.24) принципово новим форматом не можна – це швидше еволюція формату DVD. Як випливає з назви в Blu-Ray для запису і відтворення диска замість червоного лазера, який використовується в DVD і CD-ROM, застосований синій лазер (blue-violet laser). У синього лазера довжина хвилі складає 405 нанометрів (див. табл. 2.3), що значно менше довжини хвилі червоного лазера (650 нм). Менша довжина хвилі – відповідно менша інтерференція відбитого променя, відповідно можна зробити товщину доріжки даних тонше, що приводить до значного збільшення місткості носія. Товщина доріжки у Blu-Ray диска в два рази менша, ніж у DVD. Єдино, що застерігає – той факт, що енергетика синього лазера вища, ніж у червоного, що повинно призводити до значного розігрівання поверхні диска. Мабуть, Blu-Ray приводи вимагатимуть потужного охолоджування.

Рисунок 2.24 – Диск Blu-Ray

Покриття Blu-Ray, на яке записуються дані (optical transmittance protection layer), дуже тонке – 0.1 мм. З цього факту можна зробити 3 висновки. Перший – чим тонший шар, тим менше розсіяння відбитого променя і більше даних можна вміщати на квадратний дюйм, тобто тонкий шар – це необхідність для досягнення великої місткості диска. Другий – настільки тонкий шар дозволить без проблем зробити диск багатошаровим (хоча б двошаровим, як DVD), оскільки зменшується рефракція променя, відбитого від глибшого шару. Третє – настільки тонкий шар легко пошкодити, отже Blu-Ray Disс вимагатиме захисту, тобто буде упакований в пластикову оболонку, на зразок MiniDisk від Sony.

Останній факт, на жаль, говорить про те, що ціни на Blu-Ray приводи можливо будуть істотно вищі, ніж на DVD, оскільки, якби Blu-Ray Disc залишався б диском без захисної оболонки, то виробники змогли б використовувати корпуси і механіку від DVD-приводів без переробки, змінивши лише лазер і мікросхему, що декодує, а так доведеться починати практично з нуля. Можливий компромісний варіант, коли односторонні диски відносно малої місткості (23-27 Гб) вироблятимуться без упаковки і будуть відповідні приводи, що мало відрізняються від DVD-приводів на вигляд і за ціною, такі об'єми для домашніх мультимедійних комп'ютерів на перших порах більш ніж достатні, об'єм Blu-Ray диска в рази перевершує DVD, а для користувачів вельми важлива ціна. Споживачі голосують грошима, неважливо якого вони кольору, відповідно, чим менше буде початкова вартість Blu-Ray для домашнього і мультимедійного сектора, тим швидше він набере популярність. Так само диски цього формату використовуватимуться для цифрових відеоплеєрів нового покоління, що пишуть, оскільки на одному Blu-Ray Disc уміщається до 13 годин відеоінформації якості VHS (MPEG-2 з bitrate 3.8Mbps) або ж 2 години відео в модному зараз в Японії форматі HDTV (телебачення високої роздільної здатності до 1600х1200х32bit MPEG-2 з bitrate від 8Mbps і вище).

Для hi-tech установ, підприємств, систем управління, освітніх закладів і інших, де потрібні великі об'єми інформації, знадобляться більш ємні – двосторонні, двошарові (або багатошарові) Blu-Ray диски з місткістю від 100 Гб. Такі диски будуть поміщені в прозорий картридж і будуть використовувати спеціальні Blu-Ray приводи, оснащені лазерами з різною довжиною хвилі (в межах синьої частини спектру) для читання різних шарів. Перші прототипи 100 Гб дисків вже створені. Вони здаються зараз величезними з приводу об'єму інформації, але може вже в найближчому майбутньому це стане нормою, так само як швидко звикли до величезного стрибка між 3,5’’ дискетою (1.44 Мб) і CD-ROM (650 Мб). Через деякий час і домашній сектор стане одним із споживачів багатошарових Blu-ray дисків, коли впадуть спочатку високі ціни на приводи і носії інформації цього формату.

Технології Blu-Ray створювалися в першу чергу для запису, зберігання і відтворення відео і аудіо інформації, тобто в наявності сильна орієнтація у бік мультимедіа, хоча, зрозуміло, на Blu-Ray Disc можна записати і просто дані. Основними форматами зберігання відео, як і в DVD, є MPEG2, формати звуку, відповідно – AC3, MPEG1, MPEG Layer2. Для цифрових відеоплеєрів формату Blu-Ray декодування здійснюватиметься апаратно, для комп'ютерних приводів – програмно.

Не можна не згадати про високу швидкість пересилки даних, яка буде здійснена в Blu-Ray пристроях. Так, згідно специфікації, максимальна швидкість пересилки даних між Blu-Ray приводом і цільовим пристроєм (MPEG-2 декодер або комп'ютер) досягатиме 36Mbps, що при величезних об'ємах носія дуже актуально. Такій швидкості пересилки даних, повинна повною мірою відповідати швидкість зчитування. На жаль, не вказується, яким чином буде досягнута така висока швидкість, оскільки якщо цей спосіб підвищення швидкості обертання диска, то боюся, що Blu-Ray диски, що вибухнули, і опалені приводи вже не за горами, хіба що в гру вступить який-небудь невідомий чинник, наприклад новий склад матеріалу, з якого робитимуться диски. Але тоді виникає питання сумісності з попередніми поколіннями носіїв. Звичайно, можна додати логічні схеми, які визначатимуть тип носія CD/DVD/Blu-Ray і відповідно міняти максимальну швидкість обертання для кожного типа, але це приведе до подорожчання привода. Напрям до збільшення числа лазерів, що зчитують, як ми бачимо на прикладі технології True-X, веде до вибухоподібного збільшення вартості привода.

Для зворотної сумісності з попередніми носіями інформації, а це обов'язкова умова майбутньої популярності Blu-Ray, привод повинен мати хоча б два лазери – основний синій і додатковий червоний. Сумнівно, що диски для читання яких потрібен червоний лазер, читатимуться синім. Багато чинників заважає, менша товщина синього променя, інші відбивні властивості поверхні, грубіша структура самого диска і т.д. В результаті знову вилка – обереш сумісність із старими форматами – програєш в ціні, зате придбаєш прихильну увагу консервативних шарів суспільства, відмовишся від сумісності – спростиш конструкцію, але відіб’єш покупців, окрім найбільш радикально-hi-tech екстремальних. Для користувача це означає і те, що доведеться платити за кожний з приводів та п'ятидюймовий слот. Для відеоплеєрів ніяких вилок немає – сумісність з попередніми форматами потрібна у будь-якому випадку, бібліотека DVD і Video CD фільмів вже дуже велика і ніхто не захоче відмовлятися від неї через примарну перспективу обіцяну Blu-Ray.

На жаль, ті граблі, на які наступив свого часу DVD, нічому новий формат не навчили – в Blu-Ray включений захист від нелегального копіювання. На щастя, це будуть не зони, як раніше, а якийсь індивідуальний номер, який проставлятиметься на всіх записаних відео-дисках. Не зовсім ясно, для чого це робиться, але в прес-релізі гордо сказано, що "ця мітка здійснюватиме реальний високоякісний захист авторських прав". Мабуть для того пристрою, на якому був записаний диск, число відтворень буде не обмежено, а для інших – якесь число раз, те ж саме буде з легально придбаними фірмовими дисками, на яких напевно стоятиме захист від запису і перезапису. Незрозуміла ситуація із записом даних – буде там ця мітка чи ні?

Підводячи підсумок вищесказаному. Переваги Blu-Ray Disc полягають не тільки у величезній місткості, але і в тому, що його розробляли відразу дев'ять найбільших електронних корпорацій, які повинні застрахувати користувачів від проблем несумісності приводів.

Недоліки Blu-Ray не очевидні і компенсуються перевагами. Це передбачувана висока ціна приводів і дисків і проблеми зворотної сумісності з попередніми носіями інформації. Щодо ціни – ситуація повинна покращати після залучення сторонніх виробників, які так само можливо допоможуть розібратися і з захистом від копіювання, хоча навряд чи – дев'ять основних компаній зможуть наполягти на дотриманні умови повної відповідності формату. А щодо сумісності – все залежить від масовості старту Blu-Ray, його розрекламованістю і майбутньою популярністю. Якщо Blu-Ray з'явиться на кожній машині (що маловірогідне, користувачі – народ дуже консервативний), то, можливо, старі формати вимруть, як динозаври, і підтримувати сумісність з ними немає ніякої потреби. На масовість старту дуже сильно впливатиме ціна пристроїв, дисків і жорсткість ліцензійної політики дев'ятки виробників. Отже доля формату цілком в руках його творців. У кожної з дев'яти компаній є величезний досвід за плечима, успіхи і провали, так що давати поради їм безглуздо, а ось чи здатні вони вчитися на власних і чужих помилках – покаже майбутнє, майбутнє формату Blu-Ray...

Таблиця 2.3 – Характеристики Blu-ray

Ємність носія 23.3 Гб / 25 Гб / 27 Гб / 50 Гб / 100 Гб
Довжина хвилі лазера 405 nm (blue-violet laser)
Апертура лінзи 0.85 NA (numerical aperture)
Швидкість передачі даних 36 Mbps
Діаметр диска 120 mm
Товщина диска 1.2 mm (товщина оптично активного шару – 0.1 mm)
Товщина трека 0.32 nm
Мінімальна довжина точки 0.160/0.149/0.138 nm
Щільність запису 16.8/18.0/19.5 Gbit/inch2
Формат запису відео MPEG2 video (для відеоплеєра),
Формат запису аудіо

AC3, MPEG1, Layer2 (для відеоплеєра),

для комп’ютера – будь-які формати

Розмір картриджа 129 x 131 x 7 mm
2.5.11 Вік голографії

Технології оптичного запису CD, DVD, Blu-ray і HD-DVD по суті однакові. Кардинально нове рішення пропонує компанія InPhase Thecnologies – спосіб голографічного зчитування і запису інформації за допомогою лазерів.

Головна особливість – неймовірно висока щільність запису (515 Гбіт в 6,44 кв. см) і можливість використання носіїв будь-яких форм-факторів, хоч квадратних, хоч круглих. Чим товще диск – тим більше інформації він вміщає.

InPhase Teсhnologies продемонструвала на виставці СЕ5 2006 привод PolyTopic, здатний прочитувати диск завтовшки 1,5 мм за допомогою 407-нм лазера. Швидкість передачі інформації варіюється від 20 Мбайт/с до 23x Мбайт/с. Відкладати справи у довгий ящик компанія не має наміру – до кінця року в продаж повинні поступити голографічні приводи і диски місткістю від 300 Гбайт до 1,6 Тбайт. Коштувати привод буде близько 8000$.

Але майбутнє оптики не безхмарне. Людство поступово переходить до зберігання інформації в енергонезалежних мікросхемах пам'яті, які працюють швидко, захищені надійним корпусом і не вимагають багато енергії. Пристрої читання і запису мікросхем пам'яті чудово працюють в умовах трясіння і вібрації, в магнітних полях і при різних температурах. Тобто в умовах, де жорсткі диски і оптичні приводи не здатні працювати в принципі. Що стосується архівного зберігання інформації, то і до цього дня з своїм завданням непогано справляються магнітострічкові накопичувачі і звичайні вінчестери. Тому цілком можливо, що голографія так і не знайде практичного застосування. Ну а поки ми постежимо за битвою титанів – Blu-ray і HD-DVD [6]!

  2.5.12 Фізичний принцип роботи лазерного принтера

Серед сучасної комп'ютерної периферії навряд чи знайдеться пристрій, що увібрав в себе більше технологічних досягнень, ніж лазерний принтер. Своєю назвою ці принтери зобов'язані маленькому лазеру, що входить до їх складу (потужністю не більше декількох сот міліват). Лазер, що дає дуже вузький напрямлений пучок монохромного випромінювання, використовується як найтонше перо, яким на фотобарабані малюється задане зображення.

2.5.13 Стисла історія розвитку лазерного принтера

Поштовхом до створення перших лазерних принтерів послужила поява нової технології, розробленої фірмою Canon. Фахівцями цієї фірми, що спеціалізується на розробці копіювальної техніки, був створений механізм друку LBP-CX. Фірма Hewlett-Packard в співпраці з Canon приступила до розробки контролерів, що забезпечують сумісність механізму друку з комп'ютерними системами PC і UNIX. Принтер HP LaserJet вперше був представлений на початку 1980-х років. Спочатку конкуруючи з матричними принтерами, лазерний принтер швидко завоював популярність у всьому світі. Інші компанії-розробники копіювальної техніки незабаром наслідували приклад фірми Canon і приступили до досліджень у галузі створення лазерних принтерів. Toshiba, Ricoh і деякі інші, менш відомі компанії, теж були залучені до цього процесу. Проте успіхи фірми Canon у галузі створення високошвидкісних механізмів друку і співпраця з Hewlett-Packard дозволили їм досягти поставленої мети. В результаті на ринку лазерних принтерів модель LaserJet аж до 1987-88 років займала домінуюче положення. Наступною віхою в історії розвитку лазерного принтера з'явилося використання механізмів друку з більшою роздільною здатністю під керуванням контролерів, що забезпечують високий ступінь сумісності пристроїв. Іншою важливою подією стала поява кольорових лазерних принтерів. Фірми XEROX і Hewlett-Packard (далі скорочено звана HP) презентували нове покоління принтерів, які використовували мову опису сторінок PostScript Level 2, що підтримує кольорове представлення зображення і що дозволяє підвищити як продуктивність друку, так і точність передачі кольорів. Мова принтера PCL 6 також підтримує розширені колірні можливості представлення зображень для принтерів серії HP Color LaserJet.

2.5.14 Формування зображення

Лазерні принтери формують зображення шляхом позиціонування точок на папері (растровий метод). Спочатку сторінка формується в пам’яті принтера і лише потім передається до механізму друку. Растрове представлення символів і графічних образів проводиться під керуванням контролера принтера. Кожен образ формується шляхом відповідного розташування точок в чарунках сітки або матриці, як на шахівниці.

Растрова технологія (рис. 2.25) значною мірою відрізняється від векторної, яка використовувалась в пір’яних графічних пристроях. При використанні векторної технології зображення формується шляхом побудови ліній з однієї точки в іншу.


Рисунок 2.25 – Растровий метод формування образу

2.5.15 Принцип дії

Лазерні принтери, що набули найбільшого поширення, використовують технологію фотокопіювання, звану ще електрофотографічною, яка полягає в точному позиціонуванні точки на сторінці за допомогою зміни електричного заряду на спеціальній плівці з фотопровідного напівпровідника. Подібна технологія друку застосовується в ксероксах. Принтери фірм HP і QMS, наприклад, використовують механізм друку ксероксів фірми Canon.

Найважливішим конструктивним елементом лазерного принтера (рис. 2.26, 2.28) є фотобарабан, що обертається, за допомогою якого відбувається перенесення зображення на папір. Фотобарабан є металевим циліндром, покритим тонкою плівкою з фотопровідного напівпровідника (звичайно оксид цинку). По поверхні барабана рівномірно розподіляється статичний заряд за допомогою тонкого дроту або сітки, званої коронуючим дротом. На цей дріт подається висока напруга, що викликає виникнення навколо нього іонізованої ділянки, яка світиться, званою короною.

Лазер, керований мікроконтролером, генерує тонкий світловий промінь, який відбивається від дзеркала, що обертається. Цей промінь, потрапляючи на фотобарабан, засвічує на ньому елементарні ділянки (точки), і в результаті фотоелектричного ефекту в цих точках змінюється електричний заряд.


Рисунок 2.26 – Функціональна схема лазерного принтера

Для деяких типів принтерів потенціал поверхні барабана зменшується від 900 до 200 В. Таким чином, на фотобарабані виникає копія зображення у вигляді потенціального рельєфу.

На наступному робочому кроці за допомогою іншого барабана, званого девелопером (developer), на фотобарабан (рис. 2.27) наноситься тонер — найдрібніший фарбувальний пил. Під дією статичного заряду дрібні частинки тонера легко притягуються до поверхні барабана в точках, що зазнали експозиції, і формують на ньому зображення.


Рисунок 2.27 – Створення копії зображення на фотобарабані

Аркуш паперу з лотка, що подає, за допомогою системи валиків переміщується до барабана. Потім аркушу надається статичний заряд, протилежний за знаком заряду засвічених точок на барабані. При контакті паперу з барабаном частинки тонера з барабана переносяться (притягуються) на папір.


Рисунок 2.28 – Узагальнена схема роботи лазерного принтера


Для фіксації тонера на папері аркушу знов надається заряд і він пропускається між двома роликами, що нагрівають його до температури приблизно 180 - 200 °С (якщо ви хоч раз ставили пиріг з солодкою начинкою в духовку, то знаєте, як важко розділити пропечені компоненти). Після власне процесу друку барабан повністю розряджається, очищується від прилиплих частинок тонера і готовий для нового циклу друку. Описана послідовність дій відбувається дуже швидко і забезпечує високу якість друку.

У світлодіодному принтері (рис. 2.29) для засвічування барабана замість лазерного променя, керованого за допомогою системи дзеркал, використовується нерухомий світлодіодний рядок (лінійка), що складається з 2500 світлодіодів, який формує не кожну точку зображення, а цілий рядок (рис. 2.29). На цьому принципі, наприклад, працюють лазерні принтери фірми OKI.

Рисунок 2.29 – Формування зображення за допомогою LED-технології

  2.5.16 Кольоровий друк

Під час друку на кольоровому лазерному принтері використовуються дві технології. Відповідно до першої, широко використовуваної до недавнього часу, на фотобарабані послідовно для кожного окремого кольору (Cyan, Magenta, Yellow, Black) формувалося відповідне зображення, і лист друкувався за чотири проходи (рис. 2.30), що позначалося на швидкості і якості друку.


Рисунок 2.30 – Універсальна тестова таблиця

У сучасних моделях (наприклад, HP Color LaserJet 5) в результаті чотирьох послідовних прогонів на фотобарабан наноситься тонер кожного з чотирьох кольорів. Потім при контакті паперу з барабаном на нього переносяться всі чотири фарби одночасно, утворюючи потрібні поєднання кольорів на відбитку.

В результаті досягається рівніша передача колірних відтінків, майже така ж, як при друці на кольорових принтерах з термопереносом фарбника.

Відповідно в кольорових лазерних принтерах використовуються чотири ємності для тонерів. Принтери цього класу обладнані великим об'ємом пам'яті, процесором і, як правило, власним вінчестером. На вінчестері містяться різноманітні шрифти і спеціальні програми, які керують роботою, контролюють стан і оптимізують продуктивність принтера. Кольорові лазерні принтери мають досить крупні габарити і велику масу.

Технологія процесу кольорового лазерного друку вельми складна, тому і ціни на кольорові лазерні принтери ще дуже високі.

2.5.17 Основні характеристики лазерних принтерів

Лазерний принтер є складним оптико-механічним пристроєм, який, незалежно від конструктивного виконання, характеризується великою кількістю різних параметрів. Із споживчої точки зору всі параметри можна розбити на групи, що визначають:

- якість друку;

- швидкість друку;

- зручність в експлуатації;

- економічність роботи;

- додаткові можливості.

2.5.18 Фізичні процеси, що відбуваються при роботі копіювального апарату та лазерного принтера

У основі роботи, як копіювального апарату, так і лазерного принтера лежить процес сухої ксерографії (лат. xeros – сухий і graphos – писати). У свою чергу він базується на електростатичній фотографії.

У основі електростатичної фотографії лежить здатність деяких напівпровідників зменшувати свій питомий опір під дією світла. Такі напівпровідники називають фотопровідниками і використовують для виготовлення фоторецепторів.

Основні характеристики фотопровідників наведені нижче:

1. Спектральна чутливість – характеризує здатність фотопровідника реагувати на випромінювання різних довжин хвиль. Жоден фотопровідник не може однаково реагувати на різні довжини хвиль. Деякі типи фоторецепторів слабко реагують на блакитний колір, який взагалі не відтворюється на копії, деякі слабко реагують на жовтий колір. У ідеалі фотопровідник повинен однаково добре передавати всі кольори, проте звичайно цього не відбувається.

2. Фотоелектрична чутливість (швидкість формування зображення) – це величина, що характеризує швидкість зменшення заряду на фоторецепторі при освітленні його світлом заданої інтенсивності. Чим менше залишкова величина заряду на фоторецепторі після його експонування, тим вище якість копії. Ця величина може залежати від матеріалу, терміну експлуатації і стану провідника.

3. Швидкість темнової втрати – величина, що характеризує, як швидко фотопровідник втрачає заряд в темноті. Це пов'язано з тим, що напівпровідник, з якого виготовлений фоторецептор, хоч і набуває в темноті властивості діелектрика, але все таки не може зберігати заряд так довго, як це можуть робити діелектрики.

4. Втома матеріалу – це явище, що виникає при багатократному і частому експонуванні фоторецептора. Втома матеріалу може виникати і при засвіченні сонячним світлом (користувач витягнув картридж і залишив його на сонці барабаном до гори). Втома матеріалу приводить до збільшення швидкості темнової втрати заряду, а в деяких випадках навпаки до збереження заряду на поверхні після експонування.

5. Стійкість до зовнішніх впливів – ця характеристика визначає здатність фотопровідника зберігати свої властивості якомога довше при механічному контакті з папером. Папір, при правильному використанні апарату, є найбільш важливим чинником природного зносу фоторецептора. Тому шорсткий папір, неправильно обрізаний і т.д. скорочує термін служби фоторецептора. Хоча сам папір практично не контактує з фоторецептором, проте жорсткі волокна паперу можуть потрапляти під ніж ракеля. Крім того, термін його служби скорочують різні хімічні речовини, які можуть потрапити на нього з паперу або з іншого джерела, а також механічні пошкодження.

6. Кристалізація – процес перетворення атомів фотопровідника з аморфної структури у впорядковану, кристалічну. При цьому фотопровідник втрачає свої властивості. Такий процес не можна зупинити, але можна уповільнити при правильному поводженні з провідником.

7. Початковий потенціал – це потенціал на поверхні фоторецептора, при якому накопичуваний заряд дорівнює заряду, що витікає в підкладку. Звичайно фоторецептор заряджають до потенціалу нижче за початковий, щоб уникнути його пошкодження.

8. Залишковий потенціал – потенціал, який залишається на освітлених ділянках фоторецептора після експонування. При експонуванні фоторецептор швидко втрачає заряд до певної величини, потім швидкість втрати заряду значно знижується. Високий залишковий потенціал сприяє притяганню частинок тонера на освітлені ділянки, що приводить до фону на копії.

Ці характеристики фотопровідника ретельно аналізуються при виборі його як фоторецептора для копіювального апарату або принтера.

2.5.19 Технологія виготовлення фоторецепторів

Фоторецептори звичайно наносяться на алюмінієвий порожнистий циліндр. Як фоторецептор використовують або селен і його з'єднання, або органічні сполуки (підкладка).

Органічний фоторецептор двошаровий. Перший шар – шар, в якому здійснюється перенесення заряду, під ним – шар, в якому генерується заряд. За ним йде тонкий шар оксидної плівки, який запобігає витіканню заряду в підкладку. Підкладка – останній алюмінієвий шар.

Селеновий фоторецептор складається з "пасткового шару", що є природною оксидною плівкою. Цей шар зменшує швидкість темнової втрати заряду. За ним йде фотопровідний шар, алюмінієва оксидна плівка і підкладка.

Існує два види фоторецепторів: стрічкові і циліндрові. Перші звичайно використовуються в апаратах з дуже високою швидкістю, оскільки дозволяють забезпечувати вищу швидкість експонування.

2.5.20 Зарядка

Зарядка фоторецептора – це процес нанесення рівномірного заряду певної величини на поверхню фоторецептора. Зарядка проводиться коротроном. Існує декілька їх видів, які ми розглянемо нижче.

Для зарядки на коротрон подається високий потенціал за допомогою високовольтного блоку. Між коротроном і фоторецептором утворюється різниця потенціалів в декілька кіловольт, що приводить до ударної іонізації повітря (коронний розряд) і іони накопичуються на поверхні фоторецептора. Частина електронів із заземленої підкладки стікає на землю, при цьому в матеріалі підкладки, поблизу межі з фотопровідником виникає надмірний заряд, протилежний заряду на поверхні фоторецептора. Екран коротрона заземляють, щоб різниця потенціалів між фоторецептором і коронним дротом не зменшувалася, оскільки ця різниця повинна перевищувати порогову напругу корони (напруга, нижче за яку не виникає коронний розряд).

2.5.21 Види коротронів

Звичайний коротрон є тонким дротом із стійкого до окислення матеріалу, який натягнутий на металевому екрані. При забрудненні або окисленні дроту відбувається погіршення якості копії. При забрудненні екрана можливо проскакування іскри між екраном і коротроном, що призводить до необоротного вигорання фоторецептора.

Скоротрон – зарядний пристрій, що дозволяє одержати більш рівномірний заряд поверхні фоторецептора. У ньому окрім дроту використовується сітка, на яку також подається напруга.

Дікоротрон – дозволяє ще точніше регулювати величину заряду. Він складається з двох активних елементів: коронода і екрана. На коронод подається змінна напруга близько 5-6 кВ, а на екран – постійна 1-3 кВ. При цьому позитивні іони переміщаються від коронода до екрана, а негативні – до фоторецептора.

Коротрон є джерелом характерного запаху озону, що виходить з копіювального апарату під час роботи. Слід зазначити, що при використанні хороших фільтрів і їх своєчасній заміні запах не відчувається. Зараз фірми-виробники переходять на безозонову технологію.

  2.5.22 Формування зображення

Після зарядки на фоторецептор подається зображення, яке в копіювальних апаратах освітлюється потужним джерелом світла і проектується через систему дзеркал. Для збільшення і зменшення зображення використовують об'єктив із змінною фокусною відстанню. Швидкість барабана повинна бути узгоджена. Зображення з скла експонування освітлюється лампою і через систему дзеркал проектується на фоторецептор. Ті місця на фоторецепторі, на які падає світло, втрачають свій потенціал. Таким чином, на фоторецепторі залишається малюнок оригіналу у вигляді заряджених ділянок.

2.5.23 Експонування

На етапі експонування на поверхні фоторецептора виходить приховане електростатичне зображення. Розглянемо цей процес детальніше.

До початку експонування поверхневий заряд фоторецептора утримується на місці за рахунок взаємодії із зарядом протилежного знаку, що знаходиться на межі заземленої підкладки і фоторецептора.

До попадання світла на фотопровідний шар кількість вільних носіїв зарядів в ньому мала, а питомий опір – великий. Фактично електрони у фотопровіднику після зарядки зміщуються з рівноважного положення, але вони ще знаходяться в своїх молекулах. Такий зсув позитивних і негативних зарядів в молекулі називається поляризацією.

Розглянемо спрощену модель процесу, який відбувається при освітленні фоторецептора. Вважатимемо, що фоторецептор заряджений позитивним зарядом.

При попаданні світла на фотопровідник в ньому відбувається генерація вільних носіїв заряду. Електрон тієї молекули, яка розташована ближче до поверхні шару, переміщується у напрямку до позитивного іону на поверхні. Це переміщення нейтралізує частину позитивних іонів на поверхні. В той же час іон у верхньому шарі залишається позитивно зарядженим. Відсутність електронів в молекулі називають "діркою". Тип провідності, при якому основними носієм заряду є дірки, називають дірковою. При дірковій провідності відбувається переміщення електронів з одного атома в сусідній. Результатом цього є переміщення позитивних зарядів – дірок – в напрямі, протилежному руху електронів.

Після попадання світла на фоторецептор електростатичне поле на поверхні фотопровідника змінюється. Воно діє вже не між зарядом на поверхні фоторецептора і підкладкою, а між "верхньою" молекулою і підкладкою.

Електрони, що знаходяться знизу від "верхньої" молекули, негайно реагують на позитивний заряд і починають переміщуватися до "верхньої" молекули, щоб нейтралізувати частину заряду, що виник. Міграція електронів призводить до того, що позитивний заряд від "верхньої" молекули переходить до молекули з наступного, "другого" шару молекул фотопровідника.

При цьому електростатичне поле виникає між молекулою "другого" шару і підкладкою. Дірка відповідно переміщається від "верхньої" молекули до молекули з "другого" шару. Процес повторюється до тих пір, поки дірка не перейде до молекули фотопровідника, найближчої до підкладки. В цьому випадку електрони переміщаються від підкладки до фотопровідника, щоб нейтралізувати позитивний заряд.

2.5.24 Прояв

Прояв – це процес формування зображення на фоторецепторі тонером (рис. 2.31). Тонер є дрібнодисперсним порошком, частинки якого складаються з полімеру або гуми і фарбувальної речовини (для чорного тонера звичайно використовується сажа).

Можливі два варіанти прояву – однокомпонентний і двокомпонентний. Розглянемо спочатку двокомпонентний спосіб.

Двокомпонентний спосіб використовується тільки у разі негативної зарядки фоторецептора.

Тонер з бункера через спеціальний дозуючий пристрій подається в бункер з носієм. Носій (девелопер) є частинками магнітного матеріалу, покритого полімером.

Прилипання тонера до носія відбувається за рахунок трибоелектризації (електризації тертям). В процесі тертя частинки тонера і носія набувають різних зарядів і тонер рівномірно покриває носій.

Носій в свою чергу прилипає до магнітного валу, який є порожнистим з постійними магнітами всередині. Вал, покритий носієм з тонером, входить в безпосередній контакт з фоторецептором, внаслідок чого частинки тонера, що мають заряд, протилежний заряду фоторецептора, притягуються до його заряджених ділянок.

Чистий носій із залишками тонера знов потрапляє в бункер. Носій знов змішується з тонером і потрапляє на магнітний вал. Сам носій не витрачається в процесі прояву. Проте в результаті тертя носій втрачає полімерний шар, що приводить до його нездатності притягати тонер. Крім того, такий носій може викликати механічне пошкодження фоторецептора.

Для того, щоб тонер не переносився на слабкозаряджені ділянки фоторецептора, на магнітний вал подається напруга зсуву близько 100-500 В, знак якої співпадає із знаком заряду на фоторецепторі. За рахунок цього сила тяжіння тонера до валу збільшується, і тонер не переноситься на слабкозаряджені ділянки. Регулюючи величину напруги зсуву можна регулювати насиченість копії, наприклад для створення хорошої копії з поганого оригіналу. Сучасні апарати звичайно самі досить добре регулюють якість копії, практично не вимагаючи втручання оператора.

Однокомпонентний прояв звичайно використовується в апаратах малого класу і лазерних принтерах. В цьому випадку потрібен тонер іншого складу. Звичайно такий тонер коштує дорожче. Однокомпонентний прояв не передбачає наявність носія. В цьому випадку тонер виготовляється із суміші частинок магнітного матеріалу, полімеру і фарбника.

З бункера тонер потрапляє на магнітний вал. Над валом, на виході з бункера розташовується заряджаюче лезо (ракель), яке виконує дві функції:

- регулює кількість тонера на валу;

- заряджає частинки тонера.

Тертя частинок тонера об лезо приводить до зарядки тонера знаком, протилежним знаку заряду фоторецептора.

Перенесення тонера з валу на фоторецептор здійснюється за допомогою напруги зсуву, що прикладається до магнітного валу. В даному випадку напруга зсуву є змінною напругою з постійною складовою, яка по знаку відповідає знаку заряду фоторецептора. Під час періоду, із знаком, протилежним знаку заряду фоторецептора тонер переноситься на фоторецептор, під час періоду, із знаком, відповідним знаку заряду фоторецептора тонер з фонових ділянок повертається на магнітний вал.

Регулювання якості копій відбувається за рахунок зміни постійної складової.

Слід відзначити, що в двокомпонентній системі прояву набагато складніше досягти рівномірної заливки чорним кольором. Це пов'язано з тим, що носій не встигає прийняти досить тонера. Ця проблема розв'язується використанням двох або трьох валів, що обертаються в різні боки. Проте така конструкція збільшує вартість апарату.

 

 

 

Рисунок 2.31 – Фотографії тонера, значно збільшені

  2.5.25 Перенесення

Процес перенесення – процес, при якому тонер переноситься на папір. Папір проходить між коротроном перенесення і фоторецептором, на якому знаходиться тонерний малюнок. Коротрон перенесення надає паперу заряд, відповідний заряду фоторецептора. У підкладці фоторецептора існує заряд, за знаком протилежний до заряду паперу. За рахунок цього папір притягується до фоторецептора.

Для того, щоб тонер переносився на папір, сила тяжіння між ним і тонером повинна бути більша за силу тяжіння між тонером і фоторецептором. Не весь тонер переноситься на папір. Тому його залишки видаляються в процесі очищення фоторецептора.

Для поліпшення якості зображення і зменшення витрат тонера в деяких апаратах здійснюється попереднє перенесення, в процесі якого послаблюється заряд фоторецептора. Для цього або фоторецептор заздалегідь освітлюється, або на коротрон перенесення подається змінна напруга.

2.5.26 Відділення

Відділення паперу від фоторецептора здійснюється як механічним, так і електричним способом.

У першому випадку використовуються або пальці відділення, що знаходяться в безпосередній близькості до фоторецептора, або ремінці, що встановлюються з одного краю фоторецептора. Кромка паперу ковзає ремінцем і потім легко відділяється від фоторецептора.

У другому випадку використовується коротрон відділення, що звичайно використовується спільно з механічними засобами. Для відділення паперу від фоторецептора на коротрон відділення подається змінна напруга. Він генерує позитивні і негативні іони. Частина з них ослаблює силу тяжіння паперу до фоторецептора, а частина – забезпечує прилипання тонера до паперу.

2.5.27 Закріплення

Після перенесення копія вже практично готова. Але зображення, одержане на папері, може бути стерто практично будь-якою механічною дією (наприклад, легким тертям). Звичайно така копія не придатна для практичного використання. Для збільшення зчеплення тонера з папером використовується механізм закріплення.

Існує декілька способів закріплення. Найбільш поширений – це термомеханічний спосіб, при якому копія піддається нагріву і механічному притиску.

Механізм закріплення носить назву ф’юзер (піч). Механізм складається з тефлонового валу, що нагрівається, з кварцовою лампою всередині, і гумового притискного валу. Іноді замість тефлонового валу встановлюється спеціальний керамічний термоелемент, який відділяється від паперу термоплівкою. Такі копіри мають менший термін прогрівання і менше енергоспоживання, проте термоплівка здатна зробити значно меншу кількість копій і пошкодити її значно легше при неправильному витяганні паперу.

У частині апаратів для валу, що нагрівається, передбачене силіконове мастило. Це дозволяє уникнути прилипання тонера до валика. Крім того, може використовуватися спеціальний рушник, для видалення залишків тонера або іншого бруду, що прилип до валу. Для відділення паперу від валу застосовуються пальці відділення.

2.5.28 Очищення

Очищення – це процес видалення залишків тонера з фоторецептора після перенесення на папір.

Безпосередньо перед очищенням може використовуватися передочищення за допомогою засвічення фоторецептора або коротрона передочищення, який генерує позитивні і негативні іони.

Частинки тонера, що залишилися, видаляються за допомогою ножа ракеля, що знаходиться в безпосередньому контакті з фоторецептором. Ракель виготовляється і точно позиціонується щодо фоторецептора, для того, щоб не пошкодити його. Відпрацьований тонер потрапляє в бункер відпрацювання.

Повторне його використання не рекомендується, оскільки тонер злипається і забруднюється.

Можливе також видалення тонера м'якою щіткою, усередині якої встановлюється система вакуумного відкачування.

Останній етап очищення – це видалення залишкового заряду, яке здійснюється за допомогою або джерела світла, або коротрона, знак напруги якого протилежний знаку заряду фоторецептора.

Принцип дії лазерного принтера дещо відрізняється від принципів роботи копіювального апарату (рис. 2.32). Джерелом світла тут є лазер, який зменшує потенціал в певних ділянках фоторецептора (рис. 2.33). При цьому фонові ділянки фоторецептора залишаються зарядженими. Тонер заряджається протилежним зарядом.


Рисунок 2.32 – Загальна схема процесу копіювання

При цьому фонові ділянки фоторецептора залишаються зарядженими. Тонер заряджається протилежним зарядом. При контакті тонер притягується підкладкою в ділянки з низьким потенціалом, пробиті лазером.

Лазерне засвічення здійснюється наступним чином: лазерна гармата світить на дзеркало, яке обертається з високою швидкістю. Відбитий промінь через систему дзеркал і призму потрапляє на барабан і за рахунок повороту дзеркала вибиває заряди по всій довжині барабана. Потім відбувається поворот барабана на один крок (цей крок вимірюється в долях дюйма і саме він визначає роздільну здатність принтера за вертикаллю) і викреслюється нова лінія. У деяких принтерах окрім повороту барабана використовується поворот дзеркала по вертикалі, яке дозволяє на одному кроці повороту барабана викреслити два ряди точок. Зокрема перші принтери з роздільною здатністю 1200 dpi використовували саме цей принцип.

Швидкість обертання дзеркала дуже висока. Вона складає близько 7-15 тис. об./хв. Для того, щоб збільшити швидкість друку, не збільшуючи швидкість дзеркала, його виконують у вигляді багатогранної призми.


Рисунок 2.33 Схема промальовування лазерним променем

На рис. 2.33 промені чорного і червоного кольору відповідають різним положенням дзеркала. У момент А дзеркало повернене під одним кутом (червоне положення дзеркала). У наступний момент часу, що відповідає частоті лазера, дзеркало повертається і займає чорне положення. Відбитий промінь попадає вже в іншу точку фоторецептора. В реальності існують ще додаткові дзеркала, призми і світловоди, що відповідають за фокусування і зміну напряму променя.


Рисунок 2.34 – Лазерна технологія друку


Лазерні принтери (рис. 2.34) окрім механічної частини включають достатньо серйозну електроніку. Зокрема на принтерах встановлюється пам'ять великого об'єму, для того, щоб не завантажувати комп'ютер і зберігати завдання в пам'яті. На деякі принтери встановлюються вінчестери. Електронна начинка принтера також містить різні мови опису даних (Adobe PostScript, PCL і тощо.). Ці мови знову ж таки призначені для того, щоб забрати частину роботи у комп'ютера і передати її принтеру.

Розглянемо фізичний принцип дії окремих компонентів лазерного принтера.

2.5.29 Фотобарабан

Як вже писалося вище, найважливішим конструктивним елементом лазерного принтера є фотобарабан, що обертається, за допомогою якого проводиться перенесення зображення на папір. Фотобарабан є металевим циліндром, покритим тонкою плівкою з фотопровідного напівпровідника (звичайно оксид цинку). По поверхні барабана рівномірно розподіляється статичний заряд за допомогою тонкого дроту або сітки, званої коронуючим дротом. Про теорію напівпровідників можна прочитати в додатку А.

  2.5.30 Лазер

Лазер – квантовий генератор, джерело потужного оптичного випромінювання. Випромінювання надмірної енергії збуджених атомів виникає за рахунок зовнішньої дії.

Лазер відрізняється від звичайних джерел світла (наприклад, лампи з вольфрамовою ниткою) двома важливими властивостями випромінювання. По-перше, воно когерентно, тобто піки і провали всіх його хвиль з'являються погоджено, і ця узгодженість залишається незмінною протягом достатньо тривалого часу. Всі звичайні джерела світла емітують некогерентне випромінювання, в якому немає узгодженості між піками і провалами різних хвиль. У некогерентному процесі світлові хвилі випромінюються незалежно один від одного, енергія випромінюваного пучка розсіюється у просторі і швидко убуває у міру віддалення від джерела. При когерентному випромінюванні хвилі випускаються не хаотично і можуть підсилювати одна одну. Промені лазерного пучка майже паралельні між собою, тому він майже не розходиться навіть на великих відстанях від випромінювача. Так, лазерний пучок діаметром 30 см направили на Місяць, і він утворив на його поверхні світлову пляму діаметром всього 3 км (до Місяця близько 386 000 км; на такій відстані світло від звичайного джерела дало б пляму діаметром 402 000 км). Друга особливість лазерного випромінювання – монохромність; це означає, що від конкретного лазера виходять хвилі однієї і тієї ж довжини. В світлі майже всіх існуючих джерел звичайно присутні всі довжини хвиль видимого спектру і відповідно всі кольори, тому таке світло нам здається білим. Лише небагато традиційних джерел (наприклад, лампи низького тиску, наповнені розрідженими парами натрію) світять майже монохромно, але їх випромінювання некогерентне і малоінтенсивне.

Щоб створити лазер – джерело когерентного світла – необхідно:

- робоча речовина з інверсною населеністю. Тільки тоді можна одержати посилення світла за рахунок вимушених переходів;

- робочу речовину слід помістити між дзеркалами, які здійснюють зворотний зв'язок;

- посилення, що дається робочою речовиною, а значить, число збуджених атомів або молекул в робочій речовині, повинне бути більше порогового значення, яке залежить від коефіцієнта віддзеркалення напівпрозорого дзеркала.

Світло – особлива форма рухомої матерії. Воно виткане з окремих згустків, що іменуються квантами. Атоми будь-якої речовини, випромінюючи (або поглинаючи) світло, випускають (або захоплюють) тільки цілісні кванти; у таких процесах (якщо немає якихось особливих умов) атоми не взаємодіють з частками квантів. Довжина хвилі (отже, колір) випромінювання визначається енергією його кванта. Атоми, однакові за своєю природою, випромінюють або поглинають кванти лише конкретної довжини хвилі. Це наочно виявляється в свіченні газорозрядних ламп з однорідним наповненням (наприклад, неоном), які використовуються в декоративній ілюмінації і рекламі. Коли атом випромінює квант світла, він витрачає енергію; поглинаючи квант світла, атом набуває додаткової енергії. Оскільки енергія переноситься до атома і від нього порційно, то і сам атом може перебувати лише в одному з дискретних енергетичних станів – або в основному (з мінімальною енергією), або в якомусь із збуджених. Атом, що знаходиться в основному стані, при поглинанні кванта світла переходить в збуджений стан; при випромінюванні кванта світла все відбувається навпаки. Чим більше квантів поблизу атомів, тим більше і тих атомів, які здійснюють подібні переходи – з підвищенням або пониженням енергії. (Світло своєю присутністю вимушує атоми брати участь в енергетичних переходах, тому такі процеси називають вимушеними – вимушене поглинання і вимушене випромінювання.) При вимушеному поглинанні число квантів зменшується і інтенсивність світла убуває, а енергія атомів зростає. Якщо деяка кількість атомів, потрапивши в освітлення, вимушено випромінює сумарно більше, ніж вимушено поглинає, то виникає лазерний ефект – посилення світла вимушеним випромінюванням (даної множини атомів). Лазерна генерація може виникнути тільки в тій множині мікрочастинок, де збуджених атомів більше, ніж незбуджених. Отже, таку множину атомів треба наперед підготувати, тобто заздалегідь накачати до неї додаткову енергію, черпаючи її від якого-небудь зовнішнього джерела; ця операція так і називається – накачування. Типи лазерів розрізняються в основному за видами накачування. Накачуванням можуть служити:

- електромагнітне випромінювання з довжиною хвилі, що відрізняється від лазерної;

- електричний струм;

- пучок релятивістських (надзвичайно швидких) електронів;

- електричний розряд;

- хімічна реакція в придатному для генерації середовищі.

Рисунки 2.35 і 2.36 пояснюють дію рубінового лазера. Посріблені торці циліндрового стрижня з штучного рубіна служать дзеркалами. Одне з них покрите менш щільним шаром срібла, тому воно напівпрозоре і крізь нього випромінюється лазерне світло. Рубін – кристал, що складається з окислу алюмінію з домішками окислу хрому. Атоми алюмінію і кисню не відіграють визначальної ролі в лазерній генерації; головні енергетичні переходи реалізуються в хромі. При збудженні атоми хрому переходять з основного стану на один з двох рівнів збудження, позначених F1 і F2 (рис. 2.36).

Рисунок 2.35 – Рубіновий лазер: 1 – посріблений торець стрижня (глухе дзеркало); 2 – рубіновий стрижень; 3 – рідина, що охолоджує; 4 – газорозрядна лампа накачування; 5 – кожух (трубка) охолодження; 6 – слабо посріблений торець стрижня (напівпрозоре дзеркало)

Рубіновий лазер – вдосконалена схема конструкції Т.Меймана (1960). Основні його елементи – циліндричний рубіновий стрижень з плоскими посрібленими торцями, кожух охолоджування (його не було в пристрої Меймана) і газорозрядна лампа накачування.


Рисунок 2.36 – Дія лазера

Дія лазера починається із збудження атомів хрому і їх переходів на енергетичні рівні F1 і F2. Потім кожен збуджений атом спонтанно (мимоволі, тобто невимушено) випромінює квант (нелазерного випромінювання) і, втративши частину своєї енергії, переходить на метастабільний рівень E. Далі, під впливом кванта, що вимушує, з лазерною довжиною хвилі (такі кванти є у випромінюванні лампи накачування) атом випромінює ще один такий же квант, узгоджений за фазою з тим, що вимушує, і переходить на свій основний енергетичний рівень.

Рівні досить широкі, і атоми хрому збуджуються багатьма довжинами хвиль світла накачування. Проте унаслідок нестабільності вони миттєво покидають рівні F і переходять на нижчий рівень E; при цих переходах випромінювання не відбувається, а енергія, що вивільняється, передається кристалічній решітці окислу алюмінію, де і розсіюється у формі теплових втрат. Проте з рівня E атом хрому випромінює вимушено і переходить внаслідок цього на основний рівень. Кванти, емітовані атомами хрому, багато разів відбиваються між посрібленими дзеркалами рубінового стрижня і на своєму шляху вимушують багато збуджених атомів випускати такі ж кванти; процес наростає лавиноподібно і закінчується імпульсом лазерного світла. Напівпрозоре дзеркало повинне добре віддзеркалювати лазерне випромінювання, щоб забезпечити необхідну інтенсивність його частки, що вимушує, але одночасно і більше пропускати його на вихід; звичайно його коефіцієнт віддзеркалення – десь 80 %. При вимушеному випромінюванні атом хрому перебуває на збудженому рівні E не більше  с а при вимушеному – в 10 тисяч разів довше ( с). Тому у лазерного світла досить часу, щоб викликати вимушене випромінювання величезного числа збуджених атомів активного середовища.

Лазерне випромінювання реалізоване в багатьох активних середовищах – твердих тілах, рідинах і газах.

Типи лазерів:

- твердотільні лазери з оптичним накачуванням;

- газові лазери;

- хімічні лазери;

- напівпровідникові лазери;

- лазери на фарбниках.

У лазерному принтері використовується напівпровідниковий лазер.

2.5.31 Напівпровідникові лазери

Якщо крізь напівпровідникову структуру транзисторного типу пропускати електричний струм, то можна домогтися лазерного ефекту. Габарити і вихідна потужність напівпровідникових лазерів малі, але їх ККД високий. Такі лазери роблять в основному на арсеніді або алюмоарсеніді галію; застосовують їх головним чином в системах зв'язку.

Під впливом світла (у лазерних принтерах джерелом високочастотного когерентного випромінювання є лазер) освітлені ділянки шару напівпровідника на фотобарабані зменшують електропровідність і різниця потенціалів між зовнішньою і внутрішньою поверхнями шару також зменшується. На неосвітлених ділянках шару зменшення зарядів не відбувається. Відомо, що кількість стікаючого заряду пропорційна падаючому світлу. Таким чином, при експонуванні на шарі напівпровідника утворюється приховане електростатичне зображення.


3 РЕКОМЕНДАЦІЇ В ЯКИХ КЛАСАХ ТА ПРИ ВИВЧЕНІ ЯКИХ РОЗДІЛІВ ФІЗИКИ МОЖНА ВИКОРИСТОВУВАТИ ПІДІБРАНИЙ МАТЕРІАЛ

Таблиця 3.1 – Теми нової навчальної програми з фізики до яких відносяться розділи та підрозділи позаурочних занять

Клас Тема № Розділу і підрозділу
10 «Рідкі кристали та їх властивості», «Люмінесценція»

2.1 Дисплеї

2.1.1 Дисплей електронно- променевий

2.1.2 Дисплей плоский

11 «Власна і домішкова провідність напівпровідників», «Застосування напівпровідникових приладів»

2.2 Процесори

2.2.1 Техпроцес

2.2.2 Розмір КЕШа

2.2.3 Тактова частота

2.2.4 Два ядра і Hyper-Treading

2.2.5 NX/XD-BIT. Набори інструкцій

2.2.6 Вибір процесора

2.3 Флеш-пам’ять

2.3.1 Що таке flash-пам'ять?

2.3.2 ROM

2.3.3 NVRWM: EPROM

2.3.4 Організація flash-пам'яті

2.3.5 Загальний принцип роботи елемента флеш-пам’яті

2.3.6 Багаторівневі елементи (MLC – Multi Level Cell)

11 «Магнітний запис інформації»

2.4 Магнітний запис інформації

2.4.1 4,4 Мегабайта вагою в тонну

2.4.2 Механіка HDD

2.4.3 Електроніка HDD

2.4.4 Різноманітність видів HDD

2.4.5 Гучні імена виробників HDD

2.4.6 Перпендикулярні перспективи

2.4.7 SSD проти HDD

2.4.8 Перпендикулярний Hitachi

11 «Квантові генератори та їх застосування»

2.5 Прилади, в яких використовується лазер

2.5.1 Мирний лазер

11 «Квантові генератори та їх застосування»

2.5.2 Як все починалося

2.5.3 Історія невидимки

2.5.4 Компакт-диск

2.5.5 Усередині оптичного привода

2.5.6 Вибираємо привод

2.5.7 Майбутнє сьогодні

2.5.8 Оптичний принцип запису та зчитування інформації

2.5.9 CD і DVD-ROM2.5.10 Технологія Blu-Ray – наступник DVD

2.5.10 Технологія Blu-Ray – наступник DVD

2.5.11 Вік голографії

2.5.12 Фізичний принцип роботи лазерного принтера

2.5.13 Стисла історія розвитку лазерного принтера

2.5.14 Формування зображення

2.5.15 Принцип дії

2.5.16 Кольоровий друк

2.5.17 Основні характеристики лазерних принтерів

2.5.18 Фізичні процеси

2.5.19 Технологія виготовлення фоторецепторів

2.5.20 Зарядка

2.5.21 Види коротронів

2.5.22 Формування зображення

2.5.23 Експонування

2.5.24 Прояв

2.5.25 Перенесення

2.5.26 Відділення

2.5.27 Закріплення

2.5.28 Очищення

2.5.29 Фотобарабан

2.5.30 Лазер

2.5.31 Напівпровідникові лазери

Даний курс факультативу можна розбити на 10 занять, як показано у табл. 3.2. Кожне заняття за часом займає дві години з 15-ти хвилинною перервою та проводиться один раз за два тижня. Враховуючи те, що тема основного курсу з фізики, яка відповідає першому розділу факультативного курсу, починається приблизно у жовтні, то з урахуванням святкових днів, даний курс закінчується на початку березня. Таблиця 3.2 – План позаурочних занять
№ Заняття № Розділів та підрозділів факультативного курсу
1 2.1, 2.1.1, 2.1.2
2 2.2, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.6
3 2.3, 2.3.1, 2.3.2, 2.3.3
4 2.3.4, 2.3.5, 2.3.6
5 2.4, 2.4.1, 2.4.2
6 2.4.3, 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8
7 2.5, 2.5.1, 2.5.2, 2.5.3, 2.5.4
8 2.5.5, 2.5.6, 2.5.7, 2.5.8, 2.5.9, 2.5.10, 2.5.10, 2.5.11
9 2.5.12, 2.5.13, 2.5.14, 2.5.15, 2.5.16, 2.5.17
10 2.5.18, 2.5.19, 2.5.20, 2.5.21, 2.5.22, 2.5.23, 2.5.24, 2.5.25, 2.5.26, 2.5.27, 2.5.28, 2.5.29, 2.5.30, 2.5.31

ВИСНОВКИ

Результати роботи полягають у наступному:

1.         Вдалось з’ясувати переваги та недоліки різних форм позакласної роботи. Найпродуктивнішим та досконалим виявилось проведення факультативних занять з фізики у школі.

2.         Був знайдений матеріал про сучасні технології, які можна використовувати на позаурочних заняттях з фізики.

3.         Розроблено елементи методичного посібника для проведення позаурочних курсів з фізики, який містить цікаві матеріали про сучасні технології, які використовуються в комп’ютерній техніці.


СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1.         Вахольский Б.М. Факультативные занятия «Основы электроники» в старших классах средней школы / Б.М. Вахольский, Г.И. Рах. – Ростов-на-Дону: Редакционно-издательский совет Ростовского-на-Дону (головного) государственного педагогического института, 1973. – 143 с.

2.         Внеурочная работа по физике / О.Ф. Кабардин, Э.М. Браверман, Г.Р. Глущенко и др.; Под ред. О.Ф. Кабардина. – М.: Просвещение, 1983. – 223 с.

3.         Колесниченко О. Лазерные принтеры. Взгляд на принтер изнутри. Технология лазерной печати / О. Колесниченко, М. Шарыгин, И. Шишигин // Техника молодежи. – 2004. – № 6. – С. 42 – 74.

4.         Ланина И.Я. Внеклассная работа по физике / И.Я. Ланина. – М.: Просвещение, 1977. – 224 с.

5.         Ланина И.Я. Не уроком единым. Развитие интереса к физике / И.Я. Ланина. – М.: Просвещение, 1991. – 223 с.

6.         Талан А.В. Все блины комом. Разбираем жесткий диск по полочкам / А.В. Талан // Лучшие компьютерные игры. – 2006. – №56. – С. 202-204.

7.         Талан А.В. Мирный лазер / А.В. Талан // Лучшие компьютерные игры. – 2006. – №57. – С. 208-210.

8.         http://www.ixbt.com/storage.shtml – 15.11.2008.

9.         http://www.krugosvet.ru; Онлайн Енциклопедія. –19.11.2008.

10.       http://microlux.bsolution.net – 21.03.2009.

11.       http://www.pctechguide.com – 25.03.2009.


Додаток А

Напівпровідники

 

А.1 Теорія напівпровідників

Дія електронних ламп заснована на керуванні струмом електронів, що йдуть від електрода (катода), що нагрівається, до електрода, що збирає (анода). Катод нагрівається окремим нагрівальним елементом. Для роботи такого пристрою потрібна значна кількість електроенергії.

У напівпровідниках не потрібно підводити енергію до нагрівача, щоб одержати вільні електрони, а збираючі електроди можуть працювати при вельми низьких напругах.

Опір напівпровідників можна контрольовано змінювати. Це здійснюється шляхом легування напівпровідника іншими хімічними елементами. Більш того, вибираючи той або інший матеріал для легування, можна задавати потрібний вид носіїв електричного заряду (позитивні або негативні). Пояснимо цю думку.

Всі хімічні елементи, що зустрічаються в природі, можна розташувати в послідовний ряд по числу позитивних зарядів, починаючи з водню, що має один позитивний заряд в ядрі атома (заряд одного протона), і закінчуючи ураном з 92 протонами. Позитивний заряд ядра компенсується оболонками оточуючих його електронів. Електрони внутрішніх оболонок досить міцно зв'язані з ядром. Електрони ж зовнішньої оболонки зв'язані слабкіше; як валентні електрони вони можуть брати участь в хімічних процесах, а як електрони провідності – переносити електричний заряд (електричний струм в металах є потік електронів). У таких металах, як мідь, електрони зовнішніх оболонок практично вільні і під впливом дуже слабкого електричного поля здатні переносити колосальні струми. Зовнішні електрони в діелектриках зв'язані міцно, тому діелектрики практично не проводять електрики. Напівпровідники – це проміжний випадок. Згідно фундаментальному постулату фізики, званому рівнянням Больцмана, число N частинок з енергією Е дається формулою

, (А.1)

де A – константа, що характеризує матеріал, k – стала Больцмана ( еВ/К), а T – абсолютна температура в кельвінах (К). Звідси видно, що чим міцніше зв'язок і нижче температура, тим менше звільняється електронів. Якщо в кремній, який є чотирьохвалентним, домішати фосфор, сурму або миш'як, кожен атом яких має п'ять валентних електронів, то один електрон легувальної домішки буде зайвим. Цей надлишковий електрон зв'язаний слабко і легко може діяти як електрон провідності. Якщо ж в кремній ввести бор, галій або алюміній, кожен атом яких має три валентні електрони, то для утворення всіх зв'язків бракуватиме одного електрона. В цьому випадку перенесення струму визначається електронними вакансіями, або «дірками». Насправді електрони під впливом електричного поля перескакують від одного вакантного зв'язку до іншого, що можна розглядати як переміщення дірок в протилежному напрямі. Електричний струм при цьому напрямлений так само, як і у разі електронів. Відповідно до закону n = p = N/2 можна довільно змінювати число електронів n або дірок p в одиниці об'єму напівпровідника, задаючи потрібне число надмірних донорів або акцепторів електронів. Напівпровідники, в яких електронів більше, ніж дірок, називаються напівпровідниками n-типу (рис. А.2), а напівпровідники, в яких більше дірок, –напівпровідниками p-типу (рис. А.3). Ті носії, яких більше, називаються основними носіями, а яких менше – неосновними. Межа, що відокремлює в кристалі ділянку p-типу від ділянки n-типу, називається p-n-переходом.

Типовий представник напівпровідників наведено на рисунку А.1


Рисунок А.1 – Електронні оболонки атома кремнію, типового напівпровідникового матеріалу

В утворенні хімічних зв'язків і в процесі провідності можуть брати участь тільки чотири електрони зовнішньої оболонки (темні кружки), звані валентними електронами. Десять внутрішніх електронів (світлі кружки) в таких процесах не беруть участі.

Рисунок А.2 – Напівпровідник n - типу

Рисунок А.3 – Напівпровідник р -типу

А.2 p-n перехід

У з’єднаних разом шматочках напівпровідників n і p-типу найближчі до межі електрони переходитимуть з n-ділянки до p-ділянки, а найближчі дірки – назустріч їм, з p-ділянки в n-ділянки. Сам перехід буде утворений з позитивно заряджених донорів, що втратили свої електрони, на n-стороні, і з негативно заряджених акцепторів, що втратили свої дірки, на p-стороні.

Рисунок А.4 – p-n-перехід

При цьому перехід уподібнюється зарядженому конденсатору, на обкладинках якого є деяка напруга. Перетікання електронів і дірок через перехід припиняється, як тільки заряджені іони створять на ньому напругу, рівну і протилежну контактному потенціалу (напрузі), обумовленому відмінністю знаку надмірного заряду в напівпровіднику. Якщо на перехід подати відповідну зовнішню напругу, то іонізуються (втрачають свої електрони і дірки) додаткові донори і акцептори, причому в такій кількості, що перехід тільки-тільки підтримує прикладену напругу.

Цінність переходу в тому, що він дозволяє керувати потоком електронів або дірок, тобто струмом. Візьмемо типовий випадок, коли p-сторона сильно легована, а n-сторона легована значно слабкіше. Якщо на перехід подати таку напругу, при якій p-сторона позитивна, а n-сторона негативна, то зовнішня напруга компенсуватиме внутрішню, тобто знизить внутрішній бар'єр переходу і тим самим зробить можливим перетікання великих кількостей основних носіїв (дірок) через бар'єр. Так, подаючи невелику напругу в «прямому» напрямі, можна керувати великими струмами. Якщо змінити знак зовнішньої напруги на зворотний (так, щоб p-сторона була негативна, а n-сторона – позитивна), то вона ще більше підвищить внутрішній бар'єр і повністю перекриє потік основних носіїв. (Правда, невеликій кількості неосновних носіїв легше перетікати через бар'єр.) Якщо поступово підвищувати «зворотну» напругу, то врешті-решт відбудеться електричний пробій, і перехід може виявитися пошкодженим через перегрів. Фактична пробивна напруга залежить від вигляду і ступеня легування слабо легованої сторони переходу. У пристроях різної конструкції пробивна напруга може змінюватися від 1 до 15 000 В.

Таким чином, одиночний p-n-перехід може слугувати випрямлячем, який проникний для струму в одному напрямі і не проникний в протилежному. У прямому напрямі можливі дуже великі струми при напрузі менше 1 В; у зворотному ж напрямі при напругах нижче за пробивну можливі лише струми порядку пікоампера (А). Потужні випрямлячі можуть працювати при струмах близько 5000 А, тоді як в пристроях для керування сигнальними струмами струми звичайно не перевищують декількох міліампер.

Приклад використання p-n-переходу – транзистор.


Рисунок А.5 – Транзистор з p-n-переходом типу n-p-n

На рис. А.5 показані емітер, колектор і база. Товщина p-шару сильно збільшена. Транзистори такого типу застосовуються як підсилювачі.

А.3 Напівпровідникові пристрої

Спершу розглянемо принцип дії напівпровідникових приладів. Оскільки для комп'ютера найбільш важливими є транзистори, саме ними ми розгляд напівпровідникових пристроїв і обмежимо.

Напівпровідниками називають групу елементів і їх з'єднань, у яких питомий опір займає проміжне місце між провідниками і діелектриками. Вихідним матеріалом для виготовлення напівпровідникових приладів є елементи четвертої групи періодичної системи Менделєєва (кремній, германій тощо), а також їх з'єднання. Всі вони є кристалічними речовинами за нормальних умов.

При підвищенні температури або при опромінюванні напівпровідника променистою енергією, частина валентних електронів, одержавши необхідну енергію, залишають ковалентні зв'язки, при цьому вони стають носіями електричних зарядів. Одночасно, при розриві ковалентних зв'язків, утворюються і «дірки» – незаповнені ковалентні зв'язки. У хімічно чистих напівпровідниках, як легко здогадатися, кількість вільних електронів дорівнює кількості дірок. Таким чином, напівпровідник не втрачає електричної нейтральності, оскільки кількість дірок і кількість вільних електронів у ньому однакові. У електричному і магнітних полях дірка поводиться як частинка з позитивним зарядом, рівним заряду електрона.

Дірка (незаповнений ковалентний зв'язок) може бути заповнена електроном, що покинув сусідній ковалентний зв'язок. Один ковалентний зв'язок розривається, інший – відновлюється. Таким чином з’являється враження, що дірка переміщається по кристалу. Розрив ковалентних зв'язків, в результаті якого утворюються вільний електрон і дірка, називається генерацією, а відновлення ковалентного зв'язку – рекомбінацією.

За відсутності електричного поля вільні електрони і дірки здійснюють хаотичні теплові переміщення по кристалу, що, відповідно, не супроводжується появою струму. При наявності ж зовнішнього електричного поля переміщення вільних електронів і дірок упорядковується, і в результаті через напівпровідник починає текти струм. Провідність, обумовлена рухом вільних електронів, називається електронною (n-тип від “negative” – негативний), а дірок – відповідно дірковою (p-тип від “positive” – позитивний).

Основним для чистих напівпровідників є n-тип, оскільки електрони мають велику рухливість. Якщо ж внести в напівпровідник атоми з нижчою валентністю (т.з. акцептори), чим сам напівпровідник, то він набуде p-тип, оскільки низьковалентні атоми охоче поглинатимуть вільні електрони.

Ділянка, де напівпровідник з електронним типом провідності стикується з напівпровідником з дірковим типом провідності називається p-n переходом.

Розглянемо фізичні процеси, що відбуваються в монокристалі з різними типами провідності.

У n-ділянки концентрація електронів більше, ніж в p-ділянки і навпаки – для дірок.

Під дією градієнта концентрації виникає дифузія основних носіїв заряду. Електрони дифундують в p-ділянку, а дірки – в n-ділянку. Виникають ділянки з надмірними концентраціями нерухомих зарядів неосновного носія для даного типу напівпровідника. Таким чином виникає внутрішнє дифузійне поле Езап p-n переходу, і встановлюється контактна різниця потенціалів між двома типами напівпровідника, яка залежить від матеріалу, домішки і ступеня її концентрації.

Під дією внутрішнього дифузійного поля основні носії відтісняються від межі напівпровідників, таким чином, на межі утворюється тонкий шар, практично позбавлений основних носіїв заряду, а тому має високий опір.

Цей шар називається запірним шаром.

Неосновні носії вільно проходять крізь внутрішнє поле p-n переходу, оскільки воно для них є полем, що розганяє, і створюють струм провідності (дрейфу). Основні носії, долаючи дифузійне поле, створюють дифузійний струм. За відсутності зовнішнього поля дифузійний струм і струм дрейфу рівні. Такий стан називається рівноважним.

Якщо до p-n переходу прикласти зовнішню пряму напругу (позитивний полюс приєднаний до p-ділянки, негативний – до n, то зовнішнє електричне поле цього джерела буде протилежним внутрішньому дифузійному полю. Напруженість поля переходу падає, ширина запірного шару зменшується, а разом з нею – і висота потенціального бар'єру. Через зменшення висоти потенціального бар'єру зростає дифузійний струм, а струми дрейфу зменшуються. В результаті утворюється результуючий т.з. прямий струм , що тече в напрямі від p до n-ділянки.

Якщо ж прикласти напругу зворотної спрямованості (т.з. зворотне включення), то напруженість внутрішнього поля p-n переходу зростає, дифузійні струми зменшуються практично до нуля (росте потенціальний бар'єр). Струм же дрейфу практично не змінює свого значення. Виникає зворотний струм – , який пропорційний кількості неосновних носіїв в напівпровіднику і набагато менше (приблизно на 6 порядків) прямого струму. Таким чином, можна вважати, що напівпровідник з p-n переходом має односторонню провідність.

При роботі в p-n переході може спостерігатися його пробій при зворотній напрузі, оскільки при зростанні зворотної напруги зростає напруженість внутрішнього поля переходу, яке веде до зростання рухливості носіїв, що формують зворотний струм. При їх достатній швидкості через розрив ковалентних зв'язків утворюються додаткові електрони і дірки, які, в свою чергу при зіткненнях можуть створювати нові і нові носії. Цей процес називається лавинним розмноженням і веде до швидкого наростання зворотного струму. Даний процес є зворотним, поки він не перейшов в тепловий. Наявність об'ємних зарядів і електричного поля в збідненому шарі надає p-n переходу властивості електричної ємності (т.з. бар'єрна ємність p-n переходу). Вона залежить від площі переходу і напруги, що подається до нього.


, (А.2)

де  – питома електрична проникність, S – площа p-n переходу, d – ширина запірного шару.

Фізичні характеристики, такі як струм пробою, допустимі температури роботи, допустима потужність розсіяння, потужність приладу і т.п. залежать від матеріалу і способу виготовлення приладу.

А.4 Біполярні транзистори

Біполярний транзистор – монокристал напівпровідника, в якому створені три ділянки з типами провідності, що чергуються (p-n-p або n-p-n). Середню ділянку називають базою, а крайні – колектором і емітером. Перехід між емітером і базою – емітерний перехід, між базою і колектором – колекторний.

Призначення емітерного переходу – уприскування (інжекція) основних носіїв емітера в базову ділянку.

Інжекція емітерного переходу оцінюється через коефіцієнт інжекції:


, (А.3)

відношення емітерного струму, обумовленого носіями емітера до загального струму емітера, створеного як основними носіями емітера, так і основними носіями бази.

Для підвищення ефективності емітера і зменшення складової струму основних носіїв бази, ділянку емітера роблять з більшою концентрацією основних носіїв, ніж ділянка бази.

Для бази носії, які інжектувалися емітером, є неосновними. При прямому зсуві емітерного переходу поблизу нього в базі виникає значне зростання неосновних носіїв. Створюється дифузійний потік від емітерного переходу до колекторного (де їх навпаки — не вистачає). Під дією прискорюючого поля неосновні носії бази втягуються в ділянку колектора, що створює керований колекторний струм Iкк в його ланцюзі.

Коефіцієнт переносу показує, яка частина інжектованих емітером носіїв досягає колекторного переходу (оскільки зрозуміло, що досягають не всі). Цей коефіцієнт визначається як відношення керованого колектором струму до струму емітера, створеного основними носіями.


(А.4)

Також важливим параметром є коефіцієнт передачі струму емітера (приріст струму колектора до приросту струму емітера при незмінній напрузі на колекторному переході).


(А.5)

Цей коефіцієнт мало відрізняється від одиниці (від 0,95 до 0,99). Але окрім колекторного струму, створеного інжекцією, в колекторному ланцюзі тече ще і невеликий за величиною зворотний струм колекторного переходу Iкзв, обумовлений неосновними носіями колектора і бази. При зміні навколишньої температури зворотний струм порушує стабільність роботи транзистора, оскільки Iк = Iкк + Iкзв.

Можна також згадати, що кожен транзистор має ряд параметрів. Частину з них можна назвати параметрами транзисторів при малих струмах, а інші – фізичними параметрами транзистора.

Розглянемо спершу параметри при малих струмах. При малих струмах транзистор можна розглядати як лінійний активний чотириполюсник.

Рисунок А.7 – Чотириполюсник


До фізичних параметрів транзисторів відносяться: r(е) – опір емітерного переходу з урахуванням об'ємного опору емітерної області (звичайно – декілька десятків Ом); r(k) – опір колекторного переходу (від декількох сотень кілоом до мегаома); r(b) – об'ємний опір бази (декілька сот Ом).

Також будь-який транзистор має т.з. граничні характеристики: граничну температуру переходів (для кремнієвих транзисторів до 200 градусів за Цельсієм, для германієвих – до 100) і максимальну потужність, що розсіюється транзистором:


, (А.6)

де Tнав – температура навколишнього середовища, RTнав – тепловий опір, Tnmax – гранична температура переходів.

Від температури залежать і інші характеристики транзисторів. Наприклад, при підвищенні температури на 10 градусів струм Iкзв зростає в 2 рази, що порушує режим роботи транзистора у бік великих струмів. Тому в промисловості застосовуються транзистори з більш термостійких матеріалів (кремнієві) і різні методи охолоджування схеми.

Проте, біполярні транзистори мають вельми невеликий вхідний опір і високу інерційність. Тому в комп'ютерах використовуються в основному польові транзистори, які (до того ж) набагато легше піддаються мініатюризації. Біполярні транзистори дають більшу швидкодію.

А.5 Польові транзистори

Польові транзистори бувають двох типів – канальні і з ізольованим затвором. Останні і застосовуються в комп'ютерах, їх ми і розглянемо.



Рисунок А.8 – Польові транзистори (канальний та з ізольованим затвором)

Тут (рис. А.8) і далі сірим кольором позначається оксид кремнію SiO2.

Металевий електрод затвору ізольований від каналу тонким шаром діелектрика (двоокисом кремнію SiO2). Концентрація домішків в областях стоку і витоку значно більше, ніж в каналі. Основою для транзистора служить напівпровідник p-типу. Витік, стік і затвор мають металеві відводи, за допомогою яких транзистор і підключається до схеми. Такий транзистор також називається МОН-транзистором (метал-окис-напівпровідник).

МОН-транзистори характеризуються такими статичними параметрами режиму насичення:

 ,  при Uc=const, (А.7)

де S – крутизна характеристик,  – зміна струму стоку,  – зміна напруги на затворі при постійній напрузі на стоці.


,при Uзі=const, (А.8)

де Ri – внутрішній опір,  – зміна напруги на стоці, – зміна струму стоку при постійній напрузі на затворі.


, при Iс=const, (А.9)

де m – коефіцієнт посилення, що показує, в скільки разів сильніше впливає на струм стоку зміна напруги на затворі, ніж зміна напруги на стоці.

Uзі від– зворотна напруга на затворі (напруга відсічення), при якому струмопровідний канал стає перекритим.

Вхідна напруга між затвором і витоком визначається при максимально допустимій напрузі між цими електродами.

На високих частотах також дуже важливими є міжелектродні ємності: вхідна, прохідна і вихідна.

До найважливіших переваг польових транзисторів відносяться:

- Високий вхідний опір (до  Ом).

- Малий рівень власних шумів.

- Висока стійкість до температурних і радіоактивних дій.

- Висока щільність елементів при використанні в інтегральних схемах.

- Низька інерційність.

А.6 Реалізація інших напівпровідникових приладів в інтегральних схемах

Конденсатор (використовується бар'єрна місткість обернено включеного p-n переходу).


Рисунок А.9 – Конденсатор Рисунок А.10 – Резистор

Резистор (базові – високоомні, емітерні – низькоомні. Як змінний резистор можна використовувати уніполярний транзистор).

Індуктивність звичайно не використовується, оскільки схеми проектують так, щоб уникнути її використання, проте, якщо все ж таки виникає необхідність введення в схему окремої індуктивності, то її наносять на поверхню оксиду кремнію металевої спіралі.


Рисунок А.11 – Діоди з різними видами підключення

Діоди b і e – на основі колекторного переходу мають найбільшу зворотну напругу. На основі емітерного переходу (а, d) – мають найбільшу швидкодію і найменший зворотний струм. На основі паралельного включення переходів (с) – найменшу швидкодію і найбільший прямий струм.

Таким чином, за допомогою транзисторів в мікросхемах виконуються практично всі необхідні радіоелементи.


Додаток Б

 

Фотоелектричний ефект

Фотоефект – явище випускання електронів речовиною під дією світла, було відкрито в 1887 Г.Герцем, який виявив, що іскровий розряд в повітряному проміжку легше виникає за наявності поблизу іншого іскрового розряду. Герц експериментально показав, що це пов'язано з ультрафіолетовим випромінюванням іншого розряду. У 1889 Дж.Томсон і Ф.Ленард встановили, що при освітленні поверхні металу у відкачаній посудині вона випускає електрони. Продовжуючи ці дослідження, Ленард продемонстрував в 1902, що число електронів, що вилітають за 1 с з поверхні металу, пропорційно інтенсивності світла, тоді як їх енергія залежить лише від світлової довжини хвилі, тобто кольору. Обидва ці факти суперечили виведенням теорії Максвела про механізм випускання і поглинання світла. Згідно цієї теорії, інтенсивність світла є мірою його енергії і, звичайно, повинна впливати на енергію електронів, що випускаються. В 1905 А.Эйнштейн, ґрунтуючись на попередній роботі М.Планка, присвяченій тепловому випромінюванню, висунув гіпотезу, згідно якої поведінка світла певним чином схожа з поведінкою хмари частинок, енергія кожної з яких пропорційна частоті світла. Пізніше ці частинки були названі фотонами. Їх енергія (квант енергії, згідно Планку і Ейнштейну) дається формулою , де h – універсальна стала, вперше введена Планком і названа його ім'ям, а  – частота світла. Ця гіпотеза добре пояснює результати дослідів Ленарда: якщо кожен фотон в результаті зіткнення вибиває один електрон, то інтенсивнішому світлу даної частоти відповідає більше число фотонів і таке світло вибиватиме більше електронів; проте енергія кожного з них залишається такою ж.

Ейнштейн висловив припущення, що електрони, виходячи з поверхні металу, втрачають певну енергію W, звану роботою виходу. Крім того, більшість електронів передають частину своїй енергії навколишнім електронам. Таким чином, максимальна енергія фотоелектрона, що вибивається фотоном даної частоти, описується виразом , де W – величина, залежна від природи металу і стану його поверхні. Цей закон одержав надійне експериментальне підтвердження, особливо в дослідах Р.Міллікена в 1916 році. За роботи у області фотоефекту Ейнштейну була присуджена Нобелівська премія з фізики у 1922 році.

За певних умов фотоефект можливий в газах і атомних ядрах, з яких фотони з достатньо високою енергією можуть вибивати протони і народжувати мезони. Фотоелектричні властивості поверхні металу широко використовуються для керування електричним струмом за допомогою світлового пучка, при відтворенні звуку із звукової доріжки кіноплівки, а також в численних приладах контролю, лічбі і сортування. Фотоелементи знаходять застосування також в світлотехніці.

При опромінюванні напівпровідників світлом в них можна викликати провідність. Фотострум з енергією , яка більша або дорівнює ширині забороненої зони  переводить електрони з валентної зони в зону провідності. Пара електрон-дірка, що утворюється при цьому, є вільною і бере участь в створенні провідності. На рисунку Б.1 показана схема утворення фотоносіїв у власному, донорному і акцепторному напівпровідниках. Таким чином, якщо <  – для власних напівпровідників; < – для домішкових напівпровідників, то з'являються додаткові носії струму і провідність підвищується. Ця додаткова провідність називається фотопровідністю. Основна провідність, обумовлена тепловим збудженням носіїв струму, називається темновою провідністю. З наведених формул можна визначити мінімальну частоту  або максимальну довжину хвилі  , при якій світло збуджує фотопровідність.



Рисунок Б.1 – Схеми утворення фотосистем


Информация о работе «Фізичні основи роботи комп’ютера»
Раздел: Педагогика
Количество знаков с пробелами: 191192
Количество таблиц: 6
Количество изображений: 39

Похожие работы

Скачать
58900
0
0

... учня, а передусім, що є нині великою проблемою комп'ютеризації освіти, — активізації і підвищенню творчих здібностей. Мета дослідження полягає у теоретичному обґрунтуванні психологічних аспектів застосування комп'ютерів у процесі навчання і аналізі їх. Об′єкт дослідження: учні і вчителі загальноосвітньої школи у процесі застосування комп'ютерів у навчанні. Предмет дослідження: процес ...

Скачать
135809
1
21

... зичної освіти, а й важливий чинник загального розвитку школяра та професійного становлення у будь-якій галузі. Перша проблема, яку потрібно вирішити, упроваджую чи елементи комп'ютерного моделювання при вивченні фізики – вибір інструментальних засобів його реалізації. У час зародження сучасних інформаційних технологій єдиним способом було використання мов програмування високого рівня. За останні ...

Скачать
40357
0
5

... вибору Next (Далее), відкривається останнє вікно, де потрібно натиснути кнопку Finish (Готово). Далі відбудеться спроба встановити з’єднання з основним ПК. Internet   Internet – глобальна комп'ютерна мережа, що нині охоплює комп'ютери всієї земної кулі – більш ніж у 200 країнах світу. Internet можна розглядати як ядро, що забезпечує зв'язок між інформаційними мережами, які належать установам ...

Скачать
119662
8
4

... ролі різних видів програмних засобів навчального призначення в навчанні предметам початкової школи. ·          виділення місця ІКТ на уроках художньо-естетичного циклу в початковій школі. Використання комп’ютера як засобу навчання у навчальному процесі початкової школи вносить зміни й у інші елементи педагогічної технології (процес навчання, організацію навчання, засоби навчання тощо). Це, на ...

0 комментариев


Наверх