3. Задача о перемещении точки.

При введении определенного интеграла, в качестве задачи, приводящей к данному понятию, наиболее рациональным и простым для понимания учащимися является рассмотрение задачи о перемещении точки, т. к. с обратной задачей школьники уже встречались при изучении применения производной в физике.

Между положением (координатной) точки и её скоростью есть известная связь, лежащая в основе математического анализа: скорость является производной от координаты по времени. Сама операция нахождения производной называется дифференцированием. Обратная задача – нахождение положения точки по её скорости – решается с помощью другой математической операции, называемой интегрированием.

Задача. Пусть по прямой движется материальная точка. Зависимость скорости от времени выражается формулой v=v(t). Найти перемещение точки за промежуток времени [a; b].

Если бы движение было равномерным, то задача решалась бы очень просто: s=vt, т. е. s=v(b-a). Для неравномерного движения разобьём промежуток времени [a; b] на n равных частей. Рассмотрим промежуток времени [tk-1; tk] и будем считать, что в этот промежуток времени скорость была постоянной, такой как в момент времени tk: v=v(tk). Перемещение точки за промежуток времени [tk-1; tk] приближенно можно представить как произведение v(tk)Δtk. Найдем приближенное значение перемещения s:

s ≈ Sn,

где Sk=v(t1) Δt1+…+v(tk) Δtk.

Точное значение перемещения вычисляется по формуле

.

Далее вводится понятие интеграла, как предела суммы. [10]

Введение понятия интеграла как приращения первообразной ни в одном из рассмотренных учебников не используется, примеры данного метода введения будут приведены в следующей главе.

1.5. Различные методы изучения приложений интеграла в

физике.

Авторы различных учебников по–разному выводят формулы при изучении приложений интеграла. Рассмотрим несколько различных методов получения (вывода) формул.I. Составление интегральных сумм.Масса стержня переменной плотности.Будем считать, что отрезок [a; b] оси Ох имеет массу с переменной линейной плотностью ρ(х)0, где ρ(х) – непрерывная на отрезке [a; b] функция. Общая масса этого отрезка,где a=x0<x1<…<xn=b, Δxi =xi+1-xi.Аналогично можно вывести формулы для нахождения работы силы, работы электрического заряда, давления жидкости на стенку, центра тяжести системы материальных точек. [11]Центр масс.При нахождении центра масс пользуются следующими правилами:Координата  центра масс системы материальных точек А1, А2,…, Аn с массами m1, m2,…, mn, расположенных на прямой в точках с координатами x1, x2,…, xn, находится по формуле.2) При вычислении координаты центра масс можно любую часть фигуры заменить на материальную точку, поместив её в центр масс этой части, и приписать ей массу, равную массе рассматриваемой части фигуры.Пусть вдоль стержня – отрезка [a; b] оси Ох – распределена масса плотностью ρ(х), где ρ(х) – непрерывная функция. Покажем, что координата центра масс  равна .Разобьем отрезок [a; b] на n равных частей точками a=x0<x1<…<xn=b. На каждом из n этих отрезков плотность можно считать при больших n постоянной и примерно равной ρ(xk-1) на k-м отрезке (в силу непрерывности ρ(х) ). Тогда масса k-отрезка примерно равна , а масса всего стержня равна . Считая каждый из n маленьких отрезков материальной точкой массы mk, помещенной в точке xk-1, получим, что координата центра масс приближенно находится так:

.

Теперь осталось заметить, что при  числитель стремится к интегралу , а знаменатель (выражающий массу всего стержня) – к интегралу . [8]

Аналогично можно вывести формулу для нахождения работы силы.

II. Метод дифференциалов.

Электрический заряд.

Представим себе переменный ток, текущий по проводнику. Как вычислить заряд q, переносимый за интервал времени [a; b] через сечение проводника? Если бы сила тока I не менялась со временем, то изменение заряда q равнялось бы произведению I(b-a). Пусть задан закон изменения I=I(t) в зависимости от времени. Тогда на малом интервале времени [t; t+dt] можно считать силу тока постоянной и равной I(t). Тогда дифференциал заряда запишем так: dq=I(t)dt. Отсюда получаем, что весь заряд, переносимый за интервал времени [a; b] можно записать в виде интеграла:

.

Аналогично выводятся и формулы для нахождения работы силы, перемещения точки, вычисления массы стержня, электрического заряда и давления воды на плотину. [2]

III. Рассмотрение практической задачи.

Работа силы.

Вычислить работу силы F при сжатии пружины на 0,08 м, если для её сжатия на 0,01 м требуется сила 10 Н. [1]

По закону Гука сила F пропорциональна растяжению или сжатию пружины, т. е. F=kx, где x – величина растяжения или сжатия (в м), k – постоянная. Из условия задачи находим k. Так как при х=0,01 м и сила F=10 Н, то . Следовательно, F(x)=kx=1000x.

Работа силы F(x) при перемещении тела из точки а в точку b равна

.

Используя данные задачи, получаем:

 (Дж).

Рассмотрим достоинства и недостатки каждого из выше перечисленных методов.

Если учащиеся знакомились с понятием интеграла как предела интегральных сумм, то первый метод изучения приложений будет наиболее логичным и понятным. Если же понятие интеграла вводилось с помощью приращения первообразной, то использование данного метода получения формул стоит обосновать для учащихся и рассмотреть довольно подробно с введением понятия интегральных сумм, что довольно громоздко, но необходимо.

 Достоинством второго метода при введении понятия интеграла с помощью приращения первообразной состоит в том, что он не такой громоздкий, как первый и с его помощью можно вывести много формул даже в рамках урока. Однако, в таком случае вычисление интеграла с помощью интегральных сумм остается за рамками изучения, что является не совсем корректным. При введении понятия интеграла с помощью интегральных сумм рассмотрение данного метода при изучении приложений необходимо пояснить.

Третий метод применим только в классах курса А. Здесь нет необходимости выводить формулы, достаточно дать общее представление.

Подводя итоги первой главы можно сделать следующие выводы.

Как выяснилось, существуют различные методы введения понятия интеграла и изучения его приложений и выбор одного из них – задача учителя. Но для полноценного изучения интеграла, для возможности предоставить учащимся более полноценную, наиболее обоснованную и понятную картину рассматриваемого явления учителю необходимо использовать различные методы в совокупности, различную литературу, т.к. в рамках школьного учебника и методов, которые каждый из них предлагает учителю, это невозможно. В каждом из выше рассмотренных учебников есть свои недостатки при введении понятия и изучении его приложений, которые описаны выше. В некоторых из них не рассматриваются ни свойства, ни техника интегрирования.

Проанализировав школьные учебники относительно использования физических моделей при изучении понятия интеграла, можно сделать вывод, что при изучении свойств и техники интегрирования ни один автор не использует физических задач, а при введении понятия интеграла авторы ограничиваются использованием следующих физических моделей: вычисление работы переменной силы, перемещения точки, массы стержня переменной плотности. На самом деле существует огромный запас задач из других разделов физики, которые можно использовать при введении понятия интеграла, а при изучении его свойств обосновывать их с помощью физических задач, при рассмотрении техники интегрирования демонстрировать методы на примерах всё тех же физических задач. Таким образом, все понятия, свойства, методы не только будут предоставлены учащимся как факты, но будут и обоснованы, и продемонстрированы, и покажут межпредметную связь физики и математики.


Глава 2

Физические модели при изучении темы «Интеграл»

 


Информация о работе «Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах»
Раздел: Педагогика
Количество знаков с пробелами: 62794
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
88628
4
18

... имеют достаточно четкое и правильное представление из собственного жизненного опыта, а формулировки которых являются слишком громоздкими.   Выводы по § 1 1.      Основные цели изучения темы «Объемы многогранников» в курсе стереометрии – развитие пространственных представлений учащихся, освоение способов вычисления практически важных величин и дальнейшее развитие логического мышления учащихся. ...

Скачать
69553
1
0

... точек координатной оси. Занятие № 4. Тема: Аналитический метод. Метод «ветвлений». Цель занятия: познакомить учеников с основным методом решения уравнений, содержащих параметр. Литература для учителя: см. [1] , [5], [6], [7], [14] Литература для ученика: см. [3] Краткое содержание: рассмотрение различных значений, принимаемых параметром. Упрощение уравнения и приведение уравнения к произведению ...

Скачать
139322
14
40

... разработчиками. На сегодняшний день существует широкий спектр программ от простейших, контролирующих до сложных мультимедийных продуктов. 2. Опытно-экспериментальная работа по формированию познавательной потребности у учащихся средствами информационных технологий 2.1 Особенности изучения темы "Интеграл" в школьном курсе математики Выбор темы "Интеграл" неслучаен. Тема "Интеграл" изучается ...

Скачать
330445
3
30

... . Позитивизма. Для позитивистов верным и испытанным является только то, что получено с по­мощью количественных методов. Признают наукой лишь математику и естествознание, а обществознание от­носят к области мифологии. Неопозитивизм, Слабость педагогики нео­позитивисты усматривают в том, что в ней доминируют беспо­лезные идеи и абстракции, а не реальные факты. Яркий ...

0 комментариев


Наверх