1.1 Принятие решений

Принятие решений – каждодневная деятельность человека, часть его повседневной жизни. Простые решения принимаются легко, часто автоматически; в сложных и ответственных случаях человек обращается за помощью к друзьям, родственникам, опытным людям, книгам для подтверждения своего решения, несогласия с ним или советом. Решения разрабатываются и реализуются с разной степенью профессионализма, поэтому их диапазон практически неограничен – от необдуманных до детально разработанных.

Что же такое «наилучшее» решение? В исследованиях операций «наилучшим» считается решение, доставляющее оптимум функции, выражающей цель системы. Более общее определение «правильного» или «наилучшего» решения в смысле принятия решений будем считать выбор такой альтернативы из числа возможных, в которой с учетом всех разнообразных факторов и противоречивых требований будет оптимизирована общая ценность, то есть она будет в максимальной степени соответствовать достижению поставленной цели. Отметим, что в отличии от исследования операций, в теории принятия решений не существует абсолютно лучшего решения. Решение является лучшим лишь для конкретного лица принимающего решение, в отношении поставленных им целей, при заданных условиях. Эта субъективная оценка оказывается в настоящее время единственно возможной основой объединения разнородных физических параметров решаемой проблемы в единую модель, позволяющую оценивать варианты решений.

Альтернативы.

Альтернатива – это один из возможных способов достижения цели или один из конечных вариантов решений. Альтернативы отличаются друг от друга последовательностью и приемами использования активных ресурсов. Для любой задачи принятия решений должна существовать тройка: цель, критерии, альтернативы. Если отсутствует один из компонентов, то проблема не поставлена. При наличии менее двух альтернатив, отсутствует выбор.

Альтернативы могут быть зависимыми и независимыми. Если действие над какой-либо альтернативой не влияет на качество других, то такая альтернатива является независимой. При зависимых альтернативах оценки одних из них оказывают влияние на качество других.

Задачи принятия решений существенно различаются в зависимости от наличия альтернатив на момент выработки политики и принятия решений. В некоторых задачах все возможные альтернативы известны и из них производится выбор наилучшей. Например, можно выбирать лучший университет, наиболее надежный банк или же банк с оптимальным соотношением «выгода-риск», наиболее благоприятный район для покупки квартиры и т.д. Существует множество задач, в которых все альтернативы или их часть появляются после принятия решений. Например, требуется разработать правила отбора лиц на предоставление грантов на конкурсной основе. Альтернативы в такой задаче появляются после разработки и декларации правил отбора.

Также существуют задачи, когда на основе рассмотрения имеющихся альтернатив возникают новые альтернативы. Первичные альтернативы не всегда удовлетворяют участников процесса выбора. Рассматривая их, участники понимают, чего же все-таки не хватает, что реализуемо при данной ситуации, а что нет. Этот класс задач можно назвать задачами с конструируемыми альтернативами.

Критерии

В современной науке о принятии решений считается, что варианты решений (альтернативы) характеризуются различными показателями их привлекательности для ЛПР (лицо, принимающее решение). Эти показатели называют признаками, факторами, атрибутами, критериями.

Пусть задано некоторое конечное множество альтернатив. Из множества  или любого его подмножества  необходимо выделить одно или несколько вариантов решений в некотором смысле лучших или более соответствующих каким-либо заранее оговоренным условиям. Для решения этой задачи обычно используется следующий подход:

Множество вариантов  проецируется на числовую ось, так что каждому варианту соответствует конкретная точка числовой оси. В одну и ту же точку может либо не может проецироваться более одного варианта. Числовая ось, на которую спроецировано множество вариантов , называется шкалой. Сам процесс проецирования, то есть приписывания элементам из  числовых значений, соответствующих точкам числовой оси, в которые они проецируются – шкалированием. Если после такого проецирования упорядочить все варианты из  по величине приписанных им числовых оценок и сохранить за вариантами лишь их порядковый номер, то образованная таким образом шкала называется порядковой или ранговой.

Если вариант считается тем «лучше» или тем более соответствующим заранее фиксированной цели выбора, чем большая (или меньшая) числовая или ранговая оценка приписывается варианту, то шкала называется критерием для выбора или критериальной шкалой.

Рассмотрим вариант  и выразим его критериальную оценку, т.е. числовое значение той точки шкалы, в которую вариант спроецирован через . Обозначим через  функцию, заданную на всех вариантах  из  и имеющую числовые значения, определяемые критериальной шкалой. Такая функция и называется критерием.

Критерий – это способ выражения различий в оценке альтернативных вариантов с точки зрения участников процесса выбора, т.е. показатель привлекательности вариантов решений. Именно с помощью критерия ЛПР будет судить о предпочтительности исходов, а значит, и способов проведения операции по решению проблемы. Значимость того или иного из выбранных критериев определяется именно тем, что ЛПР не считает возможным выносить суждения о предпочтительности исхода операции, если именно того или иного критерия оценки недостает.

В профессиональной деятельности выбор критериев часто определяется многолетней практикой, опытом. В подавляющем большинстве задач выбора имеется достаточно много критериев оценок вариантов решений. Существует ряд свойств или требований, которым должен (по возможности) удовлетворять набор критериев. Набор критериев должен быть: полным, действенным, разложимым, неизбыточным и минимальным.

Полнота набора означает, что он должен охватывать все важные аспекты проблемы. Набор критериев является полным, если с его помощью можно показать степень достижения общей цели, то есть набор из  критериев полон, если, зная значения n-мерного критерия, связанного с общей целью, ЛПР имеет полное представление о степени достижения общей цели.

Действенность критериев. ЛПР должно понимать смысл критериев и влияние их действий на обсуждаемую проблему. Критерии должны быть такими, чтобы их можно было объяснять другим, особенно в тех случаях, когда важнейшей целью работы является выработка и защита определенной позиции. Поскольку смысл анализа решений помочь ЛПР выбрать лучший курс действий, то и критерии должны служить этой цели.

Разложимость. При использовании n критериев необходимо построить n-мерную функцию предпочтений. Для задач с большим числом критериев полезно произвести декомпозицию задачи и разложить ее на подзадачи, каждая из которых содержит меньшее число критериев. То есть желательно, чтобы набор критериев был разложим.

Неизбыточность. Критерии должны быть определены так, чтобы не дублировался учет одних и тех же аспектов решаемой проблемы.

Минимальная размерность. Желательно, чтобы набор критериев оставался настолько малым, насколько это возможно. Увеличение числа критериев приводит, с одной стороны, к анализу решаемой задачи в более широком плане, с другой стороны, может сильно усложнить и запутать анализ, что приведет к ошибочности результатов.

Формальные методы формирования набора критериев предложить трудно. Они очень сильно зависят от опыта и способности экспертов и, что крайне важно, характера лица, принимающего решения.

Схема процесса принятия решений

В классической книге лауреата нобелевской премии профессора Г. Саймона «The New Science of Management Decision», 1960 процесс принятия решений разбит на четыре фазы: сбор информации (intelligence); поиск и построение альтернатив (design); выбор альтернатив (choice); оценка результатов (review). Первая фаза – сбор информации, сконцентрирована на идентификации проблемы принятия решения и сборе всей доступной информации о ней. При поиске и построении альтернатив (вторая фаза) центральным вопросом становится определение относительно небольшого числа альтернатив, которые следует изучить в деталях. На третьей фазе происходит выбор одного из вариантов решений из множества альтернатив, подготовленных на второй фазе. Последний шаг в процессе принятия решений – это реализация выбранной альтернативы и обобщение опыта, полученного в процессе решения проблемы.

Таким образом, само решение принимается в рамках второй и третьей фаз:

·          конструирование относительно небольшого множества альтернатив;

·          окончательный выбор варианта решения из сформированного множества.

Схематически две эти фазы представлены на рисунке 1. Фазы существенным образом различаются как целями и информацией, так и методами. На фазе, в которой одним из вопросов является выбор относительно небольшого числа альтернатив (эту фазу часто называют early screening). ЛПР должно принять во внимание все возможные пути достижения цели. В процессе же детального анализа и окончательного выбора альтернативы, ЛПР ограничивает себя малым числом подготовленных вариантов решений. Выбору альтернативы из этого числа предшествует их детальное изучение.



Рис. 1 - Фазы процесса принятия решений

 

Классификация задач принятия решений

Задачи принятия решений отличаются большим многообразием, классифицировать их можно по различным признакам, характеризующим количество и качество доступной информации. В общем случае задачи принятия решений можно представить следующим набором информации:

где  – постановка задачи;

 – множество допустимых альтернативных вариантов;

 – множество методов измерения предпочтений;

 – множество методов измерения предпочтений (например, использование различных шкал);

 – отображение множества допустимых альтернатив в множество критериальных оценок;

 – системы предпочтений эксперта;

 - решающее правило, отражающее систему предпочтений.

Любой из элементов этого набора может служить классификационным признаком принятия решений.

По виду отображения F. Попытки применения исследования операций для решения различного класса задач выявили большие различия в природе изучаемых систем. В связи с этим Г. Саймоном и А. Ньюэллом была предложена следующая классификация:

1          Хорошо структурированные или количественно сформулированные проблемы, в которых существенные зависимости выяснены настолько хорошо, что они могут быть выражены в числах или символах, принимающих, в конце концов, численные оценки.

2          Слабоструктурированные или смешанные проблемы, которые содержат как качественные, так и количественные элементы, причем качественные, малоизвестные и неопределенные стороны имеют тенденцию доминировать.

3          Неструктурированные или качественно выраженные проблемы, содержащие лишь описание важнейших ресурсов, признаков и характеристик, количественные зависимости между которыми совершенно неизвестны.

Согласно этой классификации проблемы исследования операций можно назвать хорошо структурированными. В типичных задачах исследования операций объективно существует реальность, допускающая строгое количественное описание и определяющая существование единственного очевидного критерия качества. Этот класс задач широко применяется при оценке и выборе элементов технических устройств, например: оптимизация форм корпуса самолетов или кораблей, управление электростанцией, расчет радиоактивного заражения местности, минимизация затрат на перевозки и т.д. Для этих задач существуют адекватные математические модели процессов и/или устройств, и существуют данные, позволяющие априорно определить параметры моделей.

Характерными особенностями проблем третьего класса являются:

1             уникальность выбора в том смысле, что каждый раз проблема является новой для ЛПР;

2             неопределенность в оценках альтернативных вариантов решений проблемы;

3             качественный характер оценки вариантов решения проблемы, чаще всего формулируемой в словесной форме;

4             оценка альтернатив может быть получена лишь на основе субъективных предпочтений ЛПР или ГПР;

5             критериальные оценки могут быть получены только от экспертов.

К этому классу проблем относятся, например, проблемы планирования научных исследований, конкурсного отбора проектов, планирования развития города и т.д.

Ко второму классу проблем относят многие смешанные задачи, использующие как эвристические предпочтения, так и аналитические модели. Сюда относятся многие проблемы, связанные с экономическими и политическими решениями, проблемы медицинской диагностики и т.п.

По постановке задачи Т. Задачи принятия решений можно разбить на две группы:

Задачи первой группы:

Дано: группа из  альтернатив-вариантов решения проблемы и  критериев, предназначенных для оценки альтернатив; каждая из альтернатив имеет оценку по каждому из критериев. Требуется: построить решающие правила на основе предпочтений ЛПР, позволяющие: выделить лучшую альтернативу; упорядочить альтернативы по качеству; отнести альтернативы к упорядоченным по качеству классам решений.

Задачи второй группы:

Дано: группа из  критериев, предназначенных для оценки любых возможных альтернатив; альтернативы либо заданы частично, либо появляются после построения решающего правила.

Требуется: на основании предпочтений ЛПР построить решающие правила, позволяющие: упорядочить по качеству все возможные альтернативы; отнести все возможные альтернативы к одному из нескольких (указанных ЛПР) классов решений.

А теперь от теории принятия решений перейдём к матричным играм.

Матричная игра игроков с нулевой суммой может рассматриваться, как следующая абстрактная игра двух игроков.

Игрок А имеет m стратегий i = 1, 2, …, m. Игрок В имеет n стратегий j = 1, 2, …, n. Каждой паре стратегий (i, j) поставлено в соответствие число а, выражающее выигрыш игрока А за счет игрока В, если первый игрок примет свою i-ю стратегию, а второй – свою j-ю стратегию.

Каждый из игроков делает один ход: игрок А выбирает свою i-ю стратегию (i = ), В – свою j-ю стратегию (j = ), после чего игрок А получает выигрыш а за счет игрока А (если а< 0, то это значит, что игрок В платит второму сумму |а|). На этом игра заканчивается.

Каждая стратегия игрока i =  или j =  часто называется чистой стратегией.

Если рассмотреть матрицу А:

а 

а 

а 

а

а 

а 

а 

а

а 

а 

а 

а

то проведение каждой партии матричной игры с матрицей сводится к выбору игроком А i-й строки, а игроком В j-го столбца и получения игроком А (за счет игрока В) выигрыша а.

Как было сказано выше, главным в теории игр является понятие оптимальных стратегий игроков. В это понятие интуитивно вкладывается такой смысл: стратегия игрока является оптимальной, если применение этой стратегии обеспечивает ему наибольший гарантированный выигрыш при всевозможных стратегиях другого игрока.

Исходя из этих позиций, игрок А исследует матрицу выигрышей следующим образом: для каждого значения i (i = ) определяется минимальное значение выигрыша в зависимости от применяемых стратегий игрока В

 а (i = )

т.е. определяется минимальный выигрыш для игрока А при условии, что он примет свою i-ю чистую стратегию, затем из этих минимальных выигрышей отыскивается такая стратегия i = i, при которой этот минимальный выигрыш будет максимальным, т.е. находится

 а = а= α


Информация о работе «Матричные антагонистические игры с нулевой суммой в чистых стратегиях»
Раздел: Математика
Количество знаков с пробелами: 98743
Количество таблиц: 23
Количество изображений: 11

Похожие работы

Скачать
24554
3
7

... смешанными стратегиями игроков 1 и 2 называются такие наборы хо, уо соответственно, которые удовлетворяют равенству  Е (А, х, y) = Е (А, х, y) = Е (А, хо, уо). Величина Е (А, хо ,уо) называется при этом ценой игры и обозначается через u. Имеется и другое определение оптимальных смешанных стратегий: хо, уо называются оптимальными смешанными стратегиями соответственно игроков 1 и 2, если они ...

Скачать
16545
0
2

... входить в его оптимальную стратегию с положительной вероятностью, если для них выполняется равенство М(х, yo) = V. Такие чистые стратегии х называются существенными. Теорема 5. Пусть дана бесконечная антагонистическая игра с непрерывной и дифференцируемой по y на единичном квадрате при любом х функцией выигрышей М(х, y), с оптимальной чистой стратегией yo игрока 2 и ценой игры V, тогда : 1) ...

Скачать
10034
0
8

... игроков не только на максимизацию своего выигрыша, сколько на минимизацию выигрыша противника. С другой стороны, естественно также рассматривать подходящим поведение игроков в конечных бескоалиционных играх, направленное на максимизацию своего выигрыша с учётом максимального противодействия игрока, т.е. подходящей стратегией игрока 1 считать оптимальную смешанную стратегию игрока 1 в матричной ...

Скачать
30511
5
2

... общую цель. Однако разные члены коллектива могут быть по-разному информированы об обстановке проведения игры. Выигрыш или проигрыш сторон оценивается численно, другие случаи в теории игр не рассматриваются, хотя не всякий выигрыш в действительности можно оценить количественно. Игрок - одна из сторон в игровой ситуации. Стратегия игрока - его правила действия в каждой из возможных ситуаций игры. ...

0 комментариев


Наверх