Войти на сайт

или
Регистрация

Навигация


Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет

имени Франциска Скорины»

Математический факультет

Кафедра алгебры и геометрии

 

Допущена к защите

Зав. кафедрой Шеметков Л.А.

« » 2007 г.

 

 

О ω-насыщенных формациях с -разложимым дефектом 1

Курсовая работа

Исполнитель:

Студент группы М-51 А.И. Рябченко

Научный руководитель:

к.ф.- м.н., старший преподаватель В.Г. Сафонов

Гомель 2007


Оглавление

1. Введение

2. Основные понятия и обозначения

3. Используемые результаты

4. Основной результат

5 Заключение

Литература


1. Введение

Работа посвящена изучению решеточного строения частично насыщенных формаций конечных групп. Основным рабочим инструментом исследования является понятие H-дефекта ω-насыщенной формации. При этом, под H-дефектом ω-насыщенной формации F понимают длину решетки ω-насыщенных формаций, заключенных между формацией FH и F.

В случае, когда H – формация всех -разложимых групп, H-дефект ω-насыщенной формации F называют ее -разложимым lω-дефектом. Доказано, что -разложимый lω-дефект частично насыщенной формации F равен 1 в том и только в том случае, когда F представима в виде решеточного объединения минимальной ω-насыщенной не -разложимой подформации и некоторой ω-насыщенной -разложимой подформации формации F. Приведен ряд следствий.

Полученные результаты являются естественным развитием исследований, связанных с изучением решеточного строения частично насыщенных формаций, имеющих заданный нильпотентный или разрешимый lω-дефекты. Работа может быть полезна при изучении и классификации ω-насыщенных формаций с заданной структурой ω-насыщенных подформаций.

Рассматриваются только конечные группы. Используется терминология из [1–3].

В работе [4] было введено понятие H-дефекта насыщенной формации и получена классификация насыщенных формаций с нильпотентным дефектом 2. При этом под H-дефектом насыщенной формации F понимают длину решетки насыщенных формаций, заключенных между FH и F.

В дальнейшем этот результат получил развитие в разных направлениях, поскольку нашел широкое применение в теоретических исследованиях. С одной стороны, в качестве H стали рассматривать другие достаточно хорошо известные классы (А.Н.Скиба, 1991г., В.В.Аниськов, 1995-2003гг.). С другой стороны, исследовались решетки насыщенных формаций большей длины (В.Г.Сафонов 1996-2004г.). Кроме того, этот подход нашел широкое применение при изучении структурного строения формаций групп других типов (n-кратно насыщенные формации, тотально насыщенные формации и др.).

В теории ω-насыщенных формаций данный метод был использован Дж. Джехадом [5] и Н.Г.Жевновой [6] при изучении p-насыщенных и ω-насыщенных формаций с нильпотентным lω-дефектом 1. Классификация неразрешимых ω-насыщенных формаций, имеющих разрешимую максимальную ω-насыщенную подформацию, получена в [7].

Естественным развитием исследований в этом направлении является изучение решеточного строения частично насыщенных формаций, близких к N по тем или иным свойствам. Так в совместной работе авторов было дано описание не -нильпотентной ω-насыщенной формации с -нильпотентной максимальной ω-насыщенной подформацией [8].

В данной работе получена классификация частично насыщенных формаций -разложимого lω-дефекта 1.

Основным результатом является

 Теорема 1. Пусть F – некоторая ω-насыщенная формация. Тогда в том и только в том случае -разложимый lω-дефект формации F равен 1, когда F=MVωH, где M – ω-насыщенная -разложимая подформация формации F, H – минимальная ω-насыщенная не -разложимая подформация формации F, при этом: 1) всякая ω-насыщенная -разложимая подформация из F входит в MVω(HX); 2) всякая ω-насыщенная не -разложимая подформация F1 из F имеет вид HVω(F1X).

 


Информация о работе «О w-насыщенных формациях с п-разложимым дефектом 1»
Раздел: Математика
Количество знаков с пробелами: 23687
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
25620
0
0

... Тогда и только тогда  – минимальная -замкнутая тотально насыщенная не -разложимая формация, когда , где  – отличное от  простое число. Минимальные -замкнутые тотально насыщенные не -формации. Класс всех разрешимых групп с нильпотентной длиной не превосходящей  совпадает с произведением  (число сомножителей равно ) и является наследственной тотально насыщенной формацией. Теорема 3.6. Тогда и ...

0 комментариев


Наверх