4. Основной результат

В дальнейшем через X будем обозначать формацию всех -разложимых групп, а X-дефект ω-насыщенной формации F называть ее -разложимым lω-дефектом. Заметим, что класс всех -разложимых групп совпадает с классом G’G ∩NG'.

Лемма 15. Пусть H – некоторая формация. Тогда формация NωH является ω-насыщенной.

Доказательство. Пусть F=NωH. Как известно, формация Nω является насыщенной и, следовательно, ω-насыщенной для всякого непустого множества простых чисел ω. В силу леммы 7 формация Nω имеет такой внутренний ω-локальный спутник n, что n(p)=1 для любого pω и n(ω')=Nω.

Так как для любого pÎω справедливо включение, то применяя лемму 1 заметим, что F – p-локальная формация. Следовательно формация F является ω-локальной или ω-насыщенной. Лемма доказана.

 Лемма 16. Пусть A – простая группа, M и X – некоторые непустые формации. Тогда если AMVX, то AMX.

Доказательство. Предположим, что AMX=F. Тогда в силу леммы 2 в F найдется группа H с такими нормальными подгруппами N, M, N1, ..., Nt, M1, ..., Mt (t2), что выполняются условия: (1) H/NA, M/N=Soc(H/N); (2) N1∩…∩ Nt=1; (3) H/Ni – монолитическая F-группа с монолитом Mi/Ni, который H-изоморфен M/N; (4) M1∩…∩ Mt M.

Ввиду леммы 3 имеем [Mi/Ni]((H/Ni)/)form(H/Ni).

Пусть A – группа простого порядка. Тогда ввиду (1) M/N=H/N – абелев фактор.

Поэтому CH(M/N)=H. В силу условия (3) CH(Mi/Ni)=CH(M/N)=H. Поскольку =CH(Mi/Ni)/Ni, то (H/Ni)/

H/CH(Mi/Ni)=H/H=1. Значит, Mi/Niform(H/Ni). Но ввиду (3) H/NiF=MX. Поскольку M и X – формации, то AMi/NiMX.

Пусть теперь A – простая неабелева группа. Тогда в силу леммы 10 получаем AMX. Лемма доказана.

Доказательство теоремы 1. Необходимость. Пусть -разложимый lω-дефект формации F равен 1. Так как F не является -разложимой формацией, то по лемме 4 в F входит некоторая минимальная ω-насыщенная не -разложимая подформация H1. По условию M=X∩F – максимальная ω-насыщенная подформация в F. Значит, F=MVωH1.

 Достаточность. Пусть F=MVωH1, где M – ω-насыщенная -разложимая подформация формации F, H1 – минимальная ω-насыщенная не -разложимая подформация F. Понятно, что FX. Пусть -разложимые lω-дефекты формаций F, M и H1 равны соответственно t, m и r. Поскольку M – ω-насыщенная -разложимая формация, то m=0. Так как H1 – минимальная ω-насыщенная не -разложимая формация, то ее -разложимый lω-дефект r равен 1. В силу леммы 5 для -разложимого lω-дефекта формации F имеет место неравенство tm+r = 0+1 = 1.

 Если t = 0, то F – -разложимая формация, что противоречит условию FX. Таким образом, |F:F∩X |ω=1.

 Докажем теперь справедливость утверждения 1) второй части теоремы.

 Так как X∩H1 – максимальная ω-насыщенная подформация в H1, то, в силу леммы 6, имеет место решеточный изоморфизм

(((X∩H1)VωM)VωH1)/ω((X∩H1)VωM)H1/ωH1∩((X∩H1)VωM) =

= H1/ω(X∩H1)Vω(H1∩M) = H1/ωX∩H1.

 Следовательно, (X∩H1)VωM – максимальная ω-насыщенная подформация в F.

Тогда, поскольку FX, то всякая ω-насыщенная -разложимая подформация из F входит в (X∩H1)VωM.

 Для доказательства утверждения 2) покажем прежде, что в F нет минимальных ω-насыщенных не -разложимых подформаций, отличных от H1. Пусть M1=F∩X. Тогда M1 – -разложимая максимальная ω-насыщенная подформация формации F. Предположим обратное, т.е. что в F существует H2 – минимальная ω-насыщенная не -разложимая подформация, отличная от H1. Поскольку M1 является -разложимой формацией, то H2M1. Значит, F=H2VωM1=H1VωM1.

Из леммы 9 следует, что Hi=lωformGi, где Gi – такая не -разложимая монолитическая группа с монолитом Pi, что (Gi)∩=Ø и либо =(Pi)∩ω=Ø и Pi совпадает с -разложимым корадикалом группы Gi, либо Ø и выполняется одно из следующих условий: (1) группа Pi неабелева, причем, если ', то Gi/Pi – '-группа, если ={pi}, то Gi/Pi – p-группа, если же ∩ωØ и ||>1, то Gi=Pi – простая неабелева группа; (2) Gi – группа Шмидта; (3) Gi=[Pi]Hi, где Pi=(Pi) – минимальная нормальная подгруппа группы Gi; Hi – простая неабелева группа, причем (Hi)=Ø.

По лемме 7 формации Hi и M1 имеют такие внутренние ω-локальные спутники hi и m соответственно, что hi(a)=form(Gi/Fa(Gi) | GiHi), если aω∩(Gi), hi(a)=Hi, если a=ω', hi(a)=Ø, если aω\(Gi), где i=1,2 и m(a)=form(A/Fa(A) | A M1), если aω∩(M1), m(a)=M1, если a=ω', m(a)=Ø, если aω\(M1).

 Тогда по лемме 8 получаем, что формация F имеет такой ω-локальный спутник f, что f(p)=hi(p)V m(p) для всех p ω и f(ω')=HiVM1=form(H1M1)F.

Пусть G2 удовлетворяет условию (1), т.е. P2 – неабелева ωd-группа. Обозначим через R формацию, равную form(H1M1). Поскольку, по лемме 15, NωR – ω-насыщенная формация и H1M1RNωR, то F=lωform(H1M1) NωR. Но G2F. Следовательно G2NωR. Значит, R-корадикал группы G2 содержится в Nω.

 Пусть G2R 1. Так как R-корадикал – нормальная в G2 подгруппа и P2 – единственная минимальная нормальная подгруппа в G2, верно включение P2GR. Тогда получаем, что P2 – неабелева минимальная нормальная подгруппа в G2, содержится в нильпотентной подгруппе G2R группы G2. Противоречие.

Следовательно, G2R=1. Поэтому G2R=form(H1M1). Применяя теперь лемму 10, имеем G2H1M1. Тогда, так как G2M1, то G2H1. Поэтому H2=lωformG2H1.

Поскольку H2 – минимальная ω-насыщенная не X-формация, то H1=H2. Противоречие.

Пусть группа G2 удовлетворяет условию (2), т.е. G2 является группой Шмидта и P2 – ωd-группа. Поскольку для любой группы A имеет место lωformA=lωform(A/Ф(A)∩Oω(A)), то группу Gi (i=1,2) можно считать группой Шмидта с тривиальной подгруппой Фраттини, т.е. Gi=[Pi] Hi, где группа Hi имеет простой порядок qi, Pi=(Pi) – минимальная нормальная pi-подгруппа группы Gi.

Так как G2/P2F∩X=M1, G2M1, то P2=G2M1. Из того, что M1Np2M1 и P2Np2, следует G2Np2M1.

По лемме 11 формация Np2M1 является ω-насыщенной формацией. Так как H2=lωformG2, то H2Np2M1. Тогда FNp2M1, так как F – наименьшая ω-насыщенная формация, содержащая M1 и H2. Следовательно, G1Np2M1. Поскольку, G1/P1M1 и G1M1, то P1=G1M1 Np2, т.е. P1 является p2-группой. Так как G2F, то G2/Fp2(G2)f(p2)=h1(p2)Vm(p2). Но H2G2/P2=G2/Fp2(G2). Поэтому H2h1(p2)Vm(p2).

Ввиду пункта 18.20. [2], леммы 7 и замечания 1 [1] формация X всех -разложимых групп имеет такой максимальный внутренний ω-локальный спутник x, что x(p)=Np, если p∩ω и x(p)=G’ если pω\.

 Так как m(p2) – внутренний спутник формации M1X, то H2 h1(p2)V m(p2)h1(p2)V x(p2). Заметим также, что h1(p2)=form(G1/Fp2(G1))=formH1. Кроме того p2∩ω. Таким образом, H2formH1Vx(p2) = formH1VNp2 = form(formH1Np2). Применяя лемму 16, получаем, что H2formH1Np2.

Заметим, что G1 удовлетворяет либо условию (2), либо условию (3). Следовательно H1 является простой группой. Поскольку H2 – q2-группа и q2p2, то H2H1.

Но тогда G2/Op2(G2)=G2/P2H2H1G1/Fp2(G1)h1(p2)H1. Применяя лемму 12, получаем, что G2H1. Следовательно, H1=H2. Противоречие.

Пусть теперь для группы G2 выполняется условие(3), т.е. G2=[P2]H2, где P2=CG(P2) – минимальная нормальная подгруппа группы G2, H2 – простая неабелева группа, причем (H2)=Ø.

Рассуждая аналогично случаю (2) получаем, что P1 является p2-группой и H2h1(p2)VNp2 = formH1VNp2 = form(formH1Np2). Но H2 – простая неабелева группа. Значит, в силу леммы 16 получаем H2formH1Np2 и H2formH1. Следовательно, H1=H2. Противоречие.

 Пусть теперь P2 – ω'-группа. Заметим, что если P2 – неабелева, то этот случай аналогичен (1). Значит, P2 – абелева p2-группа.

 Рассмотрим формацию H=H1VωH2. Поскольку формация H1 содержится в формации H и -разложимый lω-дефект формации H1 равен 1, то по лемме 13 получаем, что |H:H∩X |ω1. С другой стороны, так как HF и -разложимый lω-дефект формации F равен 1, то по лемме 13, |H:H∩X |ω1. Значит, -разложимый lω-дефект формации H равен 1. Поэтому в H существует -разложимая максимальная ω-насыщенная подформация L. Понятно, что L=H∩X. Тогда H=LVωH1=LVωH2. Поскольку P2 является абелевой p2-группой и единственной минимальной нормальной подгруппой в G2 такой, что G2/P2L=H∩X, то G2L=P2. Это означает, что G2Np2L. Следовательно, H2Np2L. Кроме того, LNp2L. А так как по лемме 11 формация Np2L является ω-насыщенной формацией и H=LVωH2, то HNp2L. Поэтому H=LVωH1Np2L и G1Np2L. Таким образом, аналогично получаем, что P1 является p2-группой.

 Рассмотрим решетку HVωX/ωX. Ввиду леммы 6 HVωX/ωXH/ωX∩H=H/ωL.

 Таким образом, X является максимальной ω-насыщенной подформацией в HVωX. Тогда H1VωX=HVωX=H2VωX. Значит G1H2VωX. Следовательно, G1lωform(H2X)=lωform({G2}X)Nωform({G2}X).

 Так как P1 – p2-группа и p2ω', то G1form({G2}X). По условию P2=GX. Поэтому P2Ф(G2). Но G1X. Значит, G1form({G2}X)\X. Поскольку для любой группы A из {G2}X, подгруппа AX не содержит фраттиниевых A-главных факторов, то по лемме 14 получаем G1H({G2}X). Так как G1X и G2/P2X, то G1G2. Следовательно, H1=H2. Противоречие.

 Таким образом, в формации F нет минимальных ω-насыщенных не -разложимых подформаций, отличных от H1.

 Пусть теперь F1 – произвольная не -разложимая ω-насыщенная подформация из F. Тогда в силу уже доказанного и леммы получаем, что H1F1. Следовательно, применяя лемму 4, получаем F1=F1∩F=F1∩(H1VωM)=H1Vω(F1∩M). Теорема доказана.

Приведем некоторые следствия доказанной теоремы.

Если ω={p}, а  – множество всех простых чисел, то из теоремы 1 вытекает

Следствие 1. В том и только том случае p-насыщенная ненильпотентная формация F имеет нильпотентную максимальную p-насыщенную подформацию, когда F= MVpH, где M – p-насыщенная нильпотентная формация, H – минимальная p-насыщенная ненильпотентная формация, при этом: 1) всякая p-насыщенная нильпотентная подформация из F входит в MVp( H∩N ); 2) всякая p-насыщенная ненильпотентная подформация F1 из F имеет вид HVp(F1∩N).

 Если – множество всех простых чисел, то из теоремы 1 вытекает

Следствие 2. В том и только том случае ω-насыщенная ненильпотентная формация F имеет нильпотентную максимальную ω-насыщенную подформацию, когда F= MVωH, где M – ω-насыщенная нильпотентная формация, H – минимальная ω-насыщенная ненильпотентная формация, при этом: 1) всякая ω-насыщенная нильпотентная подформация из F входит в MVω(H∩N); 2) всякая ω-насыщенная ненильпотентная подформация F1 из F имеет вид HVω(F1∩N).

 Если ω и  равны множеству всех простых чисел, то из теоремы 1 получаем

Следствие 3 [4]. В точности тогда нильпотентный дефект локальной формации F равен 1, когда F=MVlH, где M – нильпотентная локальная формация, H – минимальная локальная ненильпотентная формация, при этом: 1) всякая нильпотентная подформация из F входит в MVl(H∩N); 2) всякая ненильпотентная локальная подформация F1 из F имеет вид HVl(F1∩N).

Если ω – множество всех простых чисел, из теоремы 1 вытекает

Следствие 4. В точности тогда -разложимый дефект локальной формации F равен 1, когда F=MVlH, где M – -разложимая локальная формация, H – минимальная локальная не -разложимая формация, при этом: 1) всякая -разложимая подформация из F входит в MVl(H∩X); 2) всякая не -разложимая локальная подформация F1 из F имеет вид HVl(F1∩X).


5 Заключение

В данной работе получено описание не -разложимых ω-насыщенных формаций с -разложимой максимальной ω-насыщенной подформацией. Результаты работы, являются новыми и связаны с исследованием структурного строения и классификацией частично насыщенных формаций конечных групп. В доказательствах используются методы абстрактной теории групп, общей теории решеток, а также методы теории формаций конечных групп. Результаты работы и методы исследования могут быть использованы при изучении внутреннего строения частично насыщенных формаций.


Литература

1 Скиба, А.Н. Кратно ω-локальные формации и классы Фиттинга конечных групп / А.Н. Скиба, Л.А. Шеметков // Матем. Труды. –1999. –Т.2, №2. – С. 114–147.

2 Шеметков, Л.А. Формации алгебраических систем / Л.А. Шеметков, А.Н. Скиба. – М.: Наука, 1989. – 256 с.

3 Скиба, А.Н. Алгебра формаций / А.Н. Скиба. – Мн.: Беларуская навука, 1997. –240 c.

4 Скиба, А.Н. Классификация локальных формаций конечных групп с нильпотентным дефектом 2 / А.Н.Скиба, Е.А. Таргонский // Математ. заметки. –1987. –Т.41, .№ 4. – С. 490–499.

5 Джехад, Дж. Классификация p-локальных формаций длины 3: автореф. … дис. канд. физ.-мат. наук: 02.12.01 / Дж. Джехад; Гом. гос. ун-т им.Ф.Скорины. – Гомель, 1996. – 15 с.

6 Жевнова, Н.Г. ω-Локальные формации с дополняемыми подформациями: автореф. … дис. канд. физ.-мат. наук: 02.12.01 / Н.Г. Жевнова; Гом. гос. ун-т им. Ф.Скорины. – Гомель, 1997. – 17 с.

7 Сафонов, В.Г. О приводимых ω-насыщенных формациях с разрешимым дефектом 2 / В.Г. Сафонов, И.Н. Сафонова // Изв. Гом. гос. ун-та им. Ф.Скорины. – 2005. – №5(32). – С. 162–165.

8 Сафонов, В.Г. Частично насыщенные формации с -нильпотентным дефектом 1 / В.Г. Сафонов, А.И. Рябченко // Вестн. Мозырьского гос. пед. ун-та. – 2005. – № 2(13). – С. 16–20.

9 Сафонова, И.Н. О существовании Hω-критических формаций / И.Н. Сафонова // Изв. Гом. гос. ун-та им. Ф.Скорины. – 1999. – №1. – С. 118–126.

10 Сафонова, И.Н. К теории критических ω-насыщенных формаций конечных групп / И.Н. Сафонова // Вестн. Полоцк. гос. ун-та. Сер. С. –2004. – №11. – С. 9–14.


Информация о работе «О w-насыщенных формациях с п-разложимым дефектом 1»
Раздел: Математика
Количество знаков с пробелами: 23687
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
25620
0
0

... Тогда и только тогда  – минимальная -замкнутая тотально насыщенная не -разложимая формация, когда , где  – отличное от  простое число. Минимальные -замкнутые тотально насыщенные не -формации. Класс всех разрешимых групп с нильпотентной длиной не превосходящей  совпадает с произведением  (число сомножителей равно ) и является наследственной тотально насыщенной формацией. Теорема 3.6. Тогда и ...

0 комментариев


Наверх