2.4.4 Привязка гидроцилиндра привода рукояти

В качестве исходных данных для привязки гидроцилиндра привода рукояти используют размеры очертания удлиняющей части стрелы вместе с кинематической осью последней (по результатам построения конфигурации стрелы), положения кинематической оси рукояти, предельно отвернутой от стрелы 1 (рис. 11) и предельно подвернутой к ней 2 (из построений осевого профиля), размеры окончательно выбранного гидроцилиндра -ход поршня Lп и длина по концевым шарнирам с полностью втянутым штоком L0.

Рис. 11. Привязка гидроцилиндра привода рукояти.

Первоначально хвостовую часть рукояти (кривошип) можно ориентировать произвольно относительно ее кинематической оси, например, на продолжении последней: ОрА' при отвернутой от стрелы рукояти, ОрВ при подвернутой рукояти. Длину кривошипа  назначают из условия, чтобы основание А'В треугольника А'ВОр в точности было равно размеру Lп, так что

, м

Все последующие действия аналогичны таковым для привязки ковшового гидроцилиндра: А'С' = L0 на продолжении отрезка А'В, поворот ной ОрА'С' в положение ОрАС (точка С на расстоянии  от верхнего обреза балки стрелы). В результате привязки гидроцилиндра получено положение шарнира С относительно удлиняющей части стрелы и ориентация кривошипа ОрА относительно кинематической оси рукояти 1.

2.5 Расчет рабочего оборудования

Рис. 12. Схема к определению усилий, действующих на рабочее оборудование одноковшового экскаватора.

Копание поворотом ковша. На рабочее оборудование действуют наибольшие нагрузки в период копания гидроцилиндром ковша на максимальной глубине. Если наибольшее усилие на режущей кромке ковша не может быть достигнуто из-за ограниченной устойчивости экскаватора или ограничения реактивного усилия в гидроцилиндре рукояти, то за расчетное принимают положение, при котором рукоять повернута на угол, допускающий развитие максимального усилия на режущей кромке ковша, что соответствует расчетному положению рукояти 3р (рис.12) и ковша Зк (рис.13).


Рис. 13. Схема к определению усилий в тяге ковша.

Определим наибольшее реактивное усилие, которое возникает в цилиндре рукояти РЦР, кН:

Определим реактивное усилие, которое возникает в цилиндре рукояти в положении 6р:

ΣМВ = 0

- РЦР6 · (rЦР6) + GК.ГР · (rК.ГР6) + GР · (rР6) + РСР · (ρ) = 0

РЦР6 = 1 / rЦР6 · (GК.ГР · (rК.ГР6) + GР · (rР6) + РСР · (ρ)) =

= 1/0.39 · (11· 2.97 + 7.65· 0.83 + 39.5· 3.7) = 473.8 кН

Определим реактивное усилие, которое возникает в цилиндре рукояти в положении 5р:

ΣМВ = 0

- РЦР5 · (rЦР5) + GК.ГР · (rК.ГР5) + GР · (rР5) + РСР · (ρ) = 0

РЦР5 = 1 / rЦР5 · (GК.ГР · (rК.ГР5) + GР · (rР5) + РСР · (ρ)) =

= 1/0.502 · (11· 2.81 + 7.65· 0.78 + 39.5· 3.7) =364.6 кН

Определим реактивное усилие, которое возникает в цилиндре рукояти в положении 4р:


ΣМВ = 0

- РЦР4 · (rЦР4) + GК.ГР · (rК.ГР4) + GР · (rР4) + РСР · (ρ) = 0

РЦР4 = 1 / rЦР4 · (GК.ГР · (rК.ГР4) + GР · (rР4) + РСР · (ρ)) =

= 1/0.55 · (11· 2.3 + 7.65· 0.65 + 39.5· 3.7) =320 кН

Определим реактивное усилие, которое возникает в цилиндре рукояти в положении 3р:

ΣМВ = 0

- РЦР3 · (rЦР3) + GК.ГР · (rК.ГР3) + GР · (rР3) + РСР · (ρ) = 0

РЦР3 = 1 / rЦР3 · (GК.ГР · (rК.ГР3) + GР · (rР3) + РСР · (ρ)) =

= 1/0.54 · (11· 1.62 + 7.65· 0.45 + 39.5· 3.7) =310 кН

Определим реактивное усилие, которое возникает в цилиндре рукояти в положении 2р:

ΣМВ = 0

- РЦР2 · (rЦР2) + GК.ГР · (rК.ГР2) + GР · (rР2) + РСР · (ρ) = 0

РЦР2 = 1 / rЦР2 · (GК.ГР · (rК.ГР2) + GР · (rР2) + РСР · (ρ)) =

= 1/0.54 · (11· 0.72 + 7.65· 0.2 + 39.5· 3.7) =324 кН

Определим реактивное усилие, которое возникает в цилиндре рукояти в положении 1р:

ΣМВ = 0

- РЦР1 · (rЦР1) - GК.ГР · (rК.ГР1) - GР · (rР1) + РСР · (ρ) = 0

РЦР1 = 1/ rЦР1 · (- GК.ГР · (rК.ГР1) - GР · (rР1) + РСР · (ρ)) =

= 1/0.36 · (-11· 0.26 - 7.65· 0.07 + 39.5· 3.7) =396.5 кН


Мы определили, что наибольшее реактивное усилие в цилиндре рукояти будет возникать в положении 6р. Далее мы выбираем по стандартизированному ряду гидроцилиндр, определяя его диаметр и площадь поршневой полости. Из полученных расчетов выбираем гидроцилиндр с диаметром поршня d = 0.125 м. Максимальное давление в гидроцилиндре принимаем равным 32 МПа. Подробный расчет гидроцилиндра будет рассмотрен нами далее.

Определим максимальное реактивное усилие в цилиндре рукояти РЦР, кН:

РЦРмакс = pМАКС · FЦР = 320 · 153.9 =492.5 кН,

где рМАКС - максимальное давление в цилиндре рукояти, кН;

В этом случае при копании поворотом ковша на его режущей кромке развивается усилие (рис. 12, 13) в положении 6Р:

ΣМВ = 0

Р1-6 · (ρ) – РЦР · (rЦР6) + GК.ГР · (r К.ГР) + GР · (r Р6) = 0

Р1-6 = 1 / ρ · (РЦР · (rЦР6) - GК.ГР · (r К.ГР) - GР · (r Р6)) =

= 1/3.7 · (-11·2.97 - 7.65· 0.83 + 492.5· 0.39) =41.4 кН,

в положении 3Р:

ΣМВ = 0

Р1-3 · (ρ) - РЦР · (rЦР1) - GК.ГР · (r К.ГР) - GР · (r Р1) = 0

Р1-3 =  =

= 1/3.7 · (-11·1.62 - 7.65· 0.45 + 492.5· 0.54) =66.1 кН,


в положении 1Р:

ΣМВ = 0

Р1-1 · (ρ) - РЦР · (rЦР1) - GК.ГР · (r К.ГР) - GР · (r Р1) = 0

Р1-1 =  =

= 1/3.7 · (11·0.26 + 7.65· 0.45 + 492.5· 0.36) =48.8 кН,

где ρ - плечо силы Р1 действующей относительно точки В, м.

Определим нормальную составляющую для положений 6Р, 3Р и 1Р:

P2-6 ≈ 0,2P 1-6 = 0.2 · 41.4 = 8.28 кН

P2-3 ≈ 0,2P 1-3 = 0.2 · 66.1 = 13.22 кН

P2-1 ≈ 0,2P 1-1 = 0.2 · 48.8 = 9.76 кН

Усилие на режущей кромке ковша для положений 6Р, 3Р и 1Р:

РК6мах =  = 42.22 кН

РК3мах =  = 67.41 кН

РК1мах =  = 49.76 кН

Из расчетов мы видим, что усилие на режущей кромке ковша для положения 3Р, равно РК1мах = 67.41 кН, это усилие на режущей кромке ковша будет являться максимальным, так как в этом положении будет максимальное плечо гидроцилиндра рукояти относительно шарнира В.

При копании без поворота ковша. Стрела максимально опущена вниз, копают без поворота ковша при движении рукояти снизу вверх, участок 1Р на траектории является наиболее нагруженным для гидроцилиндра стрелы, так как в этом положении плечо гидроцилиндра стрелы будем минимальным. Расчетные положения рабочего оборудования для этого случая показаны на рис. 13.

Из суммы моментов, действующих относительно точки В (шарнира рукоять—стрела), и по усилию в гидроцилиндре рукояти находят усилия на режущей кромке ковша. При этом считаем, что максимальный отпор грунта будет равен:

Р1-1 · (ρ) - РЦР · (rЦР1)+ GК.ГР · (r К.ГР) + GР · (r Р1) = 0

Р1-1 = 1/(3.7) · (492.5 · (0.36) - 11 · (0.26) - 7.65· (0.07)) = 47 кН,

где P1-1 - касательное усилие, действующее на кромке ковша при копании рукоятью; р - радиус приложения усилия на кромке ковша при копании рукоятью, м; РЦР=492.5 кН - усилие, действующее в гидроцилиндре рукояти; rЦР- плечо приложения усилия в гидроцилиндре рукояти, м; GР и GК.ГР - вес рукояти с гидроцилиндром ковша и ковша с грунтом; rР и rК.ГР - плечи сил тяжести рукояти и ковша с грунтом, м.

По найденному усилию P1-1, действующему на зубья ковша (режущую кромку ковша), и сумме моментов относительно точки А (пяты стрелы) определяют реактивное усилие в гидроцилиндрах стрелы по формуле:

РЦС =

Реактивное усилие в цилиндрах стрелы PЦС для положений 1Р определим по формуле:

PЦС1= (1 / 0.54) · (47 · 8.04 + 14.35 · ∙2.1 + 7.65 · 3.48 + 11 · 3.66 – -9.76· 3.03) = 824.6 кН,


По результатам расчета активных и реактивных усилий для рассматриваемых положений находим наиболее неблагоприятное расчетное положение. Этому положению соответствует крайнее нижнее положение стрелы 1Р. При копании поворотом ковша. Определим усилие для положений 6Р, 3Р и 1Р, действующее в тяге ковша (относительно шарнира крепления ковша и рукояти) Т, кН:

Т6 =  = (1 / 0.234) · (49.76 · 1.2 + 11 · 0.049) =257.5 кН,

где r1 = 0.049 м - плечо силы тяжести ковша с грунтом относительно точки C1; rРк = 1.2 м – плечо силы РК.

Т3=  = (1 / 0.34) · (49.76 · 1.2 - 11 · 0.565) =157.3 кН,

где r1 = 0.565 м - плечо силы тяжести ковша с грунтом относительно точки C1;

Т1 =  = (1 / 0.268) · (49.76 · 1.2 - 11 · 0.24) =212.9 кН,

где r1 = 0.24 м - плечо силы тяжести ковша с грунтом относительно точки C1;

Определим усилие в цилиндре ковша для положений 6Р, 3Р и 1Р:

PЦК6 = TrТ2/r2 = 257.5 · 0.435 / 0.24 = 466.7 кН,

где r2 = 0.24 м - плечо силы РЦК относительно точки D; rТ2 = 0.435 м - плечо усилия в тяге Т относительно точки D.


PЦК3 = TrТ2/r2 = 157.3 · 0.43 / 0.38 = 177.9 кН,

где r2 = 0.38 м - плечо силы РЦК относительно точки D; rТ2 = 0.43 м - плечо усилия в тяге Т относительно точки D.

PЦК1 = TrТ2/r2 = 212.9 · 0.3 / 0.22 = 290.3 кН,

где r2 = 0.22 м - плечо силы РЦК относительно точки D; rТ2 = 0.3 м - плечо усилия в тяге Т относительно точки D.


Информация о работе «Проектирование рабочего оборудования одноковшового экскаватора»
Раздел: Транспорт
Количество знаков с пробелами: 72436
Количество таблиц: 4
Количество изображений: 22

Похожие работы

Скачать
11706
0
5

... трубопровод=36 =36 =12 По принятому диаметру действительная скорость движения жидкости в трубопроводах (): всасывающий трубопровод сливной трубопровод ; ; напорный трубопровод ; ; Устойчивость одноковшовых погрузчиков Продольную устойчивость погрузчика рассчитывают относительно передней и задней оси опрокидывания. Погрузчик располагают так, чтобы его продольная ось была ...

Скачать
48464
8
20

... массы ковша. Грейфер применяют обычно для разработки грунтов малой плотности (I и II группы) и находящихся под водой. Более плотные грунты предварительно необходимо рыхлить. Производительность одноковшового экскаватора снижается по мере увеличения плотности грунта. Кроме того, она зависит от способа разработки грунта (при работе "на вымет" производительность повышается, при погрузке на ...

Скачать
198743
25
38

... и транспортного оборудования. Структуры комплексной механизации при использовании оборудования цикличного действия показаны на рис. 3.6. Комплекс оборудования формируется из соответствующего основного и вспомогательного оборудования отдельных технологических процессов: подготовка пород к выемке, выемочно-погрузочные работы, перемещение горной массы, отвалообразование (при разработке пустых пород), ...

Скачать
56846
15
1

... размером 0,5х1,2 м и 862 щита размером 0,4х1,2 м. 6. УКАЗАНИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ Опалубку, применяемую для возведения монолитных железобетонных конструкций, необходимо изготовлять и применять в соответствии с проектом производства работ, утвержденным в установленном порядке. При установке элементов опалубки в несколько ярусов каждый последующий ярус следует устанавливать только после ...

0 комментариев


Наверх