1 поиск рациональных компоновочных решений (Компоновка легковых авт-ей с передними ведущими и управляемыми колесами.

Для грузовых авт-ей оптимальным компоновочным решением, позволяющим значительно снизить массу, является размещение кабины над двигателем);

2 поиск рациональных форм деталей (применение листовых рессор. При установке листов Т-образного сечения, малолистовых и однолистовых рессор их масса может быть снижена.);

3 применение конструкционных материалов, обладающих малой плотностью при обеспечении достаточной плотности. В наибольшей степени масса зависит от плотности материалов. Использование легированных и низколегированных сталей, а также алюминия позволяет значительно снизить массу автомобилей. Существенно уменьшается масса автомобиля при использовании пластмасс. Помимо снижения массы автомобиля, это обеспечивает уменьшение трудоемкости изготовления деталей, повышение их коррозионной стойкости, уменьшение теплопроводности и др. пластмассы могут быть как декоративными, так и конструкционными материалами для деталей, воспринимающих различные нагрузки.

Особое внимание уделяется композиционным материалам, которые представляют собой пластмассы, армированные волокнами различного вида (стеклопластики, углепластики, боропластики).

Кузов. Топливная экономичность автомобиля в большой степени зависит от аэродинамического сопротивления кузова и автомобиля в целом. Затраты мощности на преодоление аэродинамического сопротивления пропорциональны фактору обтекаемости и третьей степени скорости автомобиля.

Масса кузова составляет значительную часть массы автомобиля, поэтому снижение массы кузова важно для улучшения топливной экономичности. Наибольший эффект дает применение пластмассовых кузовов и отдельных пластмассовых деталей. В среднем масса деталей, изготовленных из пластмасс, в 2 раза меньше массы деталей, изготовленных из стали.

3. Требования, предъявляемые к конструкции автомобилей

К конструкции автомобиля предъявляют производственные, эксплуатационные, потребительские требования и требования безопасности.

1 Производственные требования – соответствие конструкции технологическим возможностям завода или передовым тенденциям перспективной технологии:

- минимальный расход материалов; - минимальная трудоемкость; - минимальная себестоимость.

2 Эксплуатационные требования:

- Топливная экономичность; - Курсовая устойчивость;

- управляемость; - маневренность; - Плавность хода; - проходимость; - надежность; - технологичность обслуживания и ремонта; - минимальная себестоимость транспортных работ.

3 Потребительские требования:

- Малая стоимость автомобиля и его эксплуатации; - безотказность и ремонтопригодность; - безопасность;

- комфортабельность; - легкость управления.

Требования безопасности распространяются на активную, пассивную, послеаварийную и экологическую безопасность автомобиля.

Аварийная безопасность автомобиля – свойство снижать вероятность возникновения дорожно-транспортных происшествий. Это свойство заложено в конструкцию автомобиля (отсюда термин – конструктивная безопасность) и проявляется постоянно при движении и в аварийной ситуации. Этот вид безопасности характеризуется обзорностью, сигнализацией, освещенностью, эргономическими условиями рабочего места водителя, маневренностью, управляемостью, устойчивостью, скоростными и тормозными свойствами и др.

Пассивная безопасность автомобиля – свойство снижать тяжесть последствий дорожно-транспортных происшествий. Внутреннюю пассивную безопасность характеризуют мероприятия, направленные на снижение травматизма водителя и пассажиров, обеспечение сохранности грузов, а внешнюю пассивную безопасность – снижение травматизма людей, находящихся вне автомобиля в процессе дорожно-транспортного происшествия.

Послеаварийная безопасность зависит от возможностей снизить тяжесть последствий аварии (аптечка, огнетушитель), эвакуации пострадавших и др.

Экологическая безопасность автомобиля – свойство автомобиля уменьшать вредное влияние на окружающую среду (загазовывание атмосферы, запыление, осадки вредных веществ на придорожную полосу, нарушение травяного покрова, порча деревьев и кустарников, загрязнение почвы и водоемов, шум и вибрации и др.)

Назначение, классификация и требования к сцеплению. Выбор и расчет основ.пар-ов сцепления. Расчет хар-к износостойкости сцепления.

Назначение сцепления – надежная передача крутящего момента от двигателя к трансмиссии.

Классификационные признаки

I. По характеру работы:

1. постоянно замкнутые;

2. постоянно разомкнутые.

II. По типу привода:

1. с механическим;

2. с гидравлическим;

3. с комбинированным:

3.1 пневмомеханическим;

3.2 пневмогидравлическим;

3.3 электромеханическим;

3.4 электровакуумным.

III. По способу управления:

1. автоматическое;

2. неавтоматическое (ножное, ручное):

2.1 с усилителем;

2.2 без усилителя.

IV. По характеру связи между ведущим и ведомыми элементами:

1. гидравлическое (гидромуфта);

2. электромагнитное (порошковое);

3. фрикционное:

3.1 по форме элементов трения:

3.1.1. специальное (конусное, барабанное и др.);

3.1.2. дисковое:

3.1.2.1. с дисками в масле;

3.1.2.2. с сухими дисками:

3.1.2.2.1. однодисковое;

3.1.2.2.2. двухдисковое;

3.1.2.1.3. многодисковое.

3.2. по способу создания нажимного усилия:

3.2.1. центробежное;

3.2.2. полуцентробежное;

3.2.3. электромагнитное;

3.2.4. пружинное:

3.2.4.1. с периферийной пружиной;

3.2.4.2. с центральной пружиной:

3.2.4.2.1. цилиндрической;

3.2.4.2.2. конической;

3.2.4.2.3. диафрагменной.

Требования, предъявляемые к конструкции:

1.  Надежная передача крутящего момента от двигателя к трансмиссии;

2.  Плавность и полнота включения;

3.  Чистота выключения;

4.  Минимальный момент инерции ведомых элементов;

5.  Хороший отвод теплоты от поверхностей трения;

6.  Предохранение трансмиссии от динамических нагрузок;

7.  Поддержание нажимного усилия в заданных пределах в процессе эксплуатации;

8.  Минимальные затраты физических усилий на управление;

9.  Хорошая уравновешенность;

10.  Общие требования: обеспечение минимальных размеров и массы, простота устройства и обслуживания, технологичность, ремонтопригодность, низкий уровень шума.

Характеристики симметричного и ассиметричного циклов

Ассиметричный цикл, в котором среднее напряжение цикла будет

Амплитуда цикла

Коэффициент асимметрии

Буквой Т обозначен период, соответствующий полному циклу изменения напряжения.

Симметричный цикл, у которого  = - , а среднее напряжение цикла

 ,

амплитуда цикла

А коэффициент асимметрии цикла

 

В качестве примера можно указать, что в автомобиле изменение напряжений по ассиметричной схеме имеет место у некоторых деталей ходовой части и подвески рессор, балок мостов поворотных шкворней. По симметричной схеме - у валов КП, у полуразгруженных полуосей (напряжения изгиба).

Характеристика пульсирующего цикла

Пульсирующий цикл, являющийся частным случаем несимметричного цикла, когда , а среднее напряжение и амплитуда цикла

 

По пульсирующей схеме – у зубьев шестерен.

 


 

Определение перед.числа привода сцепления и выбор пар-ов отдельных его звеньев

Схемы приводов сцепления: а) механического, б) гидравлического

Общее передаточное число привода сцепления

uп.с. = u1u2

где u1 – передаточное число педального привода; u2 – передаточное число

рычагов выключения сцепления.

Передаточное число механического привода:

гидравлического:

Ход педали зависит от величины s, на которую отводится нажимной диск при выключении сцепления, и зазора Д2 между рычагами выключения и выжимным подшипником.


Sпед = suп.с. + Д2u1

Общее передаточное число привода сцепления включает передаточное число рычагов выключения и передаточное число педального привода, а в случае гидравлического привода и передаточное число гидравлической части привода. Общее передаточное число привода сцепления определяется из условия, что усилие на педали при отсутствии усилителя не должно превосходить для легковых автомобилей 150 Н, для грузовых 250 Н. Полный ход педали должен лежать при этом в пределах 120...190 мм, включая свободный ход педали.

Расчет крестовины шарнира карданной передачи

В карданном шарнире угловых скоростей определяют нагрузки в крестовине и в вилке. Шипы крестовины испытывают напряжения изгиба и смятия, а крестовина – напряжение разрыва. Вилка подвергается изгибу и скручиванию. Примем, что шарниром передается максимальный динамический момент, который ограничивается коэффициентом запаса сцепления. При малом угле наклона г вала шарнир передает момент  (передаточное число трансмиссии до карданной передачи), а динамическое нагружение можно учитывать запасом прочности.

Напряжение изгиба шипа крестовины (см.рис.):

Напряжения среза шипа крестовины:


Напряжения крестовины на разрыв в сечении А-А площадью F:

 

Материал крестовин: стали 18ХГТ, 20Х.

Назначение, классификация и требования к конструкции ведущих мостов. Расчет балки ведущего моста на прочность (нагрузочный режим- разгон автомобиля). Расчет балки ведущего моста на прочность (нагрузочный режим - торможение)

Мосты обеспечивают поддержание несущей части, передают силы и моменты от колес на несущую часть, являясь элементом рулевого управления, обеспечивают поворот автомобиля, является частью автомобиля.

К автомобильным мостам предъявляются следующие основные требования: минимальная масса, наименьшие габаритные размеры и оптимальная жесткость.

Ведущие мосты одновременно являются корпусной деталью для элементов трансмиссии и включают в себя: главную передачу, дифференциал, полуоси и применяются в качестве заднего и промежуточного моста.

Классификация мостов.

1 По назначению (ведущий, управляемый(с поворотными колесами, с поворотной балкой), комбинированный, ведомый)

2 По числу колес (с одинарными, со сдвоенными)

3 По виду применяемой подвески (неразрезной, разрезной)

4 По конструктивной схеме (с поперечиной, с балкой )

5 По составу (одиночный, в составе тележки)

Расчет балки моста (прямолинейное движение автомобиля)

Мосты автомобиля рассчитывают на прочность по сцеплению колес автомобиля с дорогой при максимальном значении коэффициента сцепления. Расчет выполняют для различных режимов движения автомобиля. При расчете значения сил и моментов, действующих на мосты при движении автомобиля, принимаются максимальными.

Ведущий мост. Балку ведущего моста рассчитывают для трех нагрузочных режимов: прямолинейное движение автомобиля, занос автомобиля и переезд автомобиля через препятствие.

При прямолинейном движении автомобиля балка ведущего моста (см.рис.) изгибается в вертикальной плоскости под воздействием нормальных реакций дороги  и  на ведущие колеса.

Изгибающий момент в вертикальной плоскости где  – плечо изгиба.

Нормальные реакции дороги от нагрузки на ведущий мост равны:

где  – коэффициент перераспределения нагрузки на задний мост.

Кроме того, под действием тяговой силы  балка ведущего моста испытывает статическую нагрузку и изгибается также в горизонтальной плоскости. Изгибающий момент в горизонтальной плоскости  Тяговые силы на ведущих колесах равны: - коэф сцепл колес с дорогой.

Кроме изгибающих моментов на балку ведущего моста действует крутящий момент


где  – радиус ведущих колес.

В балке ведущего моста наиболее опасными местами являются обычно сечения под площадками для крепления пружин (рессор).

Суммарный результ-й момент от изгиба и круч-я в опасном сеч-и балки моста

Результ-е напряжения от изгиба и кручения для трубчатого круглого сечения

где  – момент сопротивления трубчатого сечения.

Расчет балки ведущего моста на прочность (режим – динамические нагрузки)

При динамическом нагружении изгибающий момент в вертикальной плоскости:

Mи = Rz1Кдl,

где Кд= 1,5...3 — коэффициент динамичности.

Напряжение изгиба уи= Mи /W.

Для балок мостов, литых из стали и чугуна, [фи]= 300 МПа, для штампованных из стального листа [фи]= 500 МПа.

Определение нагрузок и расчет переднего моста производят так же, как и заднего моста. При торможении коэффициент перераспределения нагрузки на передний мост m1=1,1...1,2. Необходимо учитывать переменное сечение балки: двутавровое в средней части и после рессорной площадки постепенно переходящее в круглое. Вертикальные реакции Rz1=Rz2= m1G1/2, где G1— нагрузка на передние колеса.

Для балки управляемого моста жесткость важна для сохранения углов установки колес. Жесткость ведущего моста влияет на условия зацепления зубчатых передач, на нагрузку подшипников и на нагруженность полуосей.

Прогиб балки равен силе в заданном сечении, отнесенной к жесткости сечения i=Ри/(ЕJx). Балка нагружена в местах крепления рессор.

Переменное сечение балки затрудняет расчет. В таких случаях или упрощают схему и ведут расчет по наиболее опасному сечению, или усложняют расчет, применяя метод конечных элементов.

Прогиб балки грузовых автомобилей достигает 2...3 мм

Расчет балки ведущего моста на прочность (нагрузочный режим – боковой занос автомобиля)

При заносе балку моста рассчитывают на изгиб в вертикальной плоскости, считая при этом Pт1=Pт2=0.

Изгибающие моменты в вертикальной плоскости

, — боковые реакции при заносе;

,


где  и — нормальные реакции опорной поверхности при заносе. Условно принимается .

Эпюры моментов от и строят раздельно, а затем складывают. Опасное сечение картера находится в месте крепления рессоры: здесь напряжение изгиба:

 ,

Назначение, классификация и требования к конструкции главных передач. Выбор основных параметров и расчет на прочность конических зубчатых пар главной передачи.

Главная передача обеспечивает постоянное увеличение крутящего момента и передачу его к ведущим колёсам, выбирается из условий получения заданной максимальной скорости автомобиля на высшей передаче в коробке передач и оптимальной топливной экономичности.

К главным передачам предъявляют следующие требования: -оптимальное значение передаточного числа; - высокий КПД; -низкий уровень шума; - небольшие вертикальные размеры.

Классификация главных передач.


Информация о работе «Устройство автомобиля»
Раздел: Транспорт
Количество знаков с пробелами: 55755
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
18073
0
8

... система состоит из тормозов 4, расположенных на колесах, и привода к ним; она служит для снижения скорости, остановки π удержания автомобиля на месте. Общее устройство двигателя   Карбюраторный четырехтактный двигатель Автомобильный двигатель относится к тепловым машинам, в которых тепловая энергия сжигаемого топлива превращается в механическую работу; топливо (обычно жидкое) вводится ...

Скачать
25980
1
7

... связанные с маховиком, т.е. вращающиеся вместе с ним, и ведомые, связанные с ведущим валом коробки передач. По числу ведомых дисков сцепления разделяются на однодисковые и двухдисковые. Устройство и работа Сцепление автомобиля МАЗ - 54227(рис. 2) — двухдиско­вое, сухое, фрикционного типа, с пе­риферийным расположением цилин­дрических пружин, установлено в литом чугунном картере. Нажимный ...

Скачать
124866
3
8

... —к «массе». Качество отработки элементов вождения по трудным грунтам зависит от наличия и состояния цепей противоскольжения, трековых дорожек, матов и средств самовытаскивания 4. РАЗРАБОТКА КОНСТРУКЦИИ ДУБЛИРУЮЩЕГО УСТРОЙСТВА УПРАВЛЕНИЯ 4.1. ОПРЕДЕЛЕНИЕ РАСЧЕТНОЙ НАГРУЗКИ НА ВАЛ, ВОЗВРАТНЫЕ ПРУЖИНЫ И ПЕДАЛИ. Номинальное усилие на дополнительные педали тормоза и сцепления будет находиться в ...

Скачать
93230
8
16

... тоннеля 5 см. 6. Экономическая часть. Расчет стоимости установки аудиоаппаратуры в легковом автомобиле 6.1 Определение статей затрат, включаемых в себестоимость объекта и составление калькуляции себестоимости Расчет производим для типовой схемы размещения аудиоаппаратуры в автомобиле (рис. 9). Аппаратуру предусматриваем среднего ценового диапазона, имеющую следующие особенности: - ...

0 комментариев


Наверх