2.2 Пример 2

Рассмотрим пример:

Требуется вычислить интеграл

(3.4)

где область G задаётся следующими неравенствами:

Область интегрирования принадлежит единичному квадрату . Для вычисления интеграла воспользуемся таблицей случайных чисел (см. приложение), при этом каждые два последовательных числа из этой таблицы примем за координаты случайной точки .

Записываем координаты и  случайных точек в табл. 3.1, округляя до 3 знаков после запятой, и выбираем те из них, которые принадлежат области интегрирования.

Заполним табл. 3.1 по правилу:

1) Среди всех значений  выделяем те, которые заключены между  и .Для этих значений полагаем , для всех остальных

2) Среди всех значений . Соответствующих выделенным , выбираем те, которые заключены между

Для этих значений полагаем , для всех остальных

Таблица 3.1

0.577 0.500 1.000 1 0.716 0 0.154 0 0
0.737 0.500 1.000 1 0.701 0 0.474 0 0
0.170 0.500 1.000 0 0.533 0
0.432 0.500 1.000 0 0.263 0
0.059 0.500 1.000 0 0.663 0
0.355 0.500 1.000 0 0.094 0
0.303 0.500 1.000 0 0.552 0
0.640 0.500 1.000 1 0.205 0 0.280 1 1 0.452
0.002 0.500 1.000 0 0.557 0
0.870 0.500 1.000 1 0.323 0 0.740 1 1 0.855
0.116 0.500 1.000 0 0.930 0
0.930 0.500 1.000 1 0.428 0 0.860 1 1 1.048
0.529 0.500 1.000 1 0.095 0 0.058 0 0
0.996 0.500 1.000 1 0.700 0 0.992 1 1 1.482
0.313 0.500 1.000 0 0.270 0
0.653 0.500 1.000 1 0.934 0 0.306 0 0
0.058 0.500 1.000 0 0.003 0
0.882 0.500 1.000 1 0.986 0 0.764 0 0
0.521 0.500 1.000 1 0.918 0 0.042 0 0
0.071 0.500 1.000 0 0.139 0
всего 4 3.837

3) Вычисляем . Области тнтегрирования принадлежат только те точки, для которых . В примере

4) Вычисляем значения подынтегральной функции в полученных точках.

После заполнения табл. 3.1 вычисляем площадь области интегрирования  и по формуле (3.2) находим

Для сравнения приведём точное значение интеграла

Результат имеет сравнительно небольшую точность потому, что число точек  недостаточно велико.


Информация о работе «Сущность метода Монте-Карло и моделирование случайных величин»
Раздел: Математика
Количество знаков с пробелами: 26423
Количество таблиц: 6
Количество изображений: 2

Похожие работы

Скачать
21420
5
0

... частности, разрабатываются способы уменьшения дисперсии используемых случайных величин, в результате чего уменьшается ошибка, допускаемая при замене искомого математического ожидания а его оценкой а*. §2. Оценка погрешности метода Монте-Карло. Пусть для получения оценки a* математического ожидания а случайной величины Х было произведено n независимых испытаний (разыграно n возможных значений Х) ...

Скачать
12333
4
20

... в особенности многомерных, для решения систем алгебраических уравнений высокого порядка, для исследования различного рода сложных систем (автоматического управления, экономических, биологических и т.д.). Сущность метода Монте-Карло состоит в следующем: требуется найти значение а некоторой изучаемой величины. Для этого выбирают такую случайную величину X, математическое ожидание которой а: (1) ...

Скачать
19446
2
2

етка – одно из простейших средств получения случайных чисел с хорошим равномерным распределением, на использовании которых основан этот метод. Метод Монте – Карло это статистический метод. Его используют при вычислении сложных интегралов, решении систем алгебраических уравнений высокого порядка, моделировании поведения элементарных частиц, в теориях передачи информации, при исследовании сложных ...

Скачать
24305
0
0

... опыт», учится на своих и чужих ошибках и постепенно выучиваться принимать правильные решения – если не оптимальные, то почти оптимальные. Попробуем проиллюстрировать процесс имитационного моделирования через сравнение с классической математической моделью.  Этапы процесса построения математической модели сложной системы: 1.            Формулируются основные вопросы о поведении ...

0 комментариев


Наверх