2.2 Визначення коефіцієнтів фільтра та отримання передаточної функції

Для визначення коефіцієнтів фільтра використаємо середовище MatLab, при цьому можливості MatLab дозволяють виключити етап розрахунку фільтра прототипу і одразу визначити коефіцієнти фільтра згідно з ТЗ.

 

Wp1z=Wp1/Wd

Wp2z=Wp2/Wd

[b,a]=cheby1(n,Rp,[Wp1z Wp2z]);

Hrz=tf(b,a,1/(Wd*2*pi))

В результаті розрахунків отримуємо:

Вектор коефіцієнтів чисельника

b = 1.0e-008 * [0.0053 0 -0.0480 0 0.1920 0 -0.4481 0 0.6721 0 -0.6721 0 0.4481 0 -0.1920 0 0.0480 0 -0.0053]

a = 1.0e+004 * [0.0001 -0.0014 0.0102 -0.0462 0.1510 -0.3780 0.7496 -1.2033 1.5843 -1.7234 1.5525 -1.1555 0.7054 -0.3486 0.1365 -0.0409 0.0088 -0.0012 0.0001]

Передаточна функція фільтра:


Побудуємо характеристики отриманого фільтра за допомогою MatLab.

[b,a]=cheby1(n,Rp,[Wp1z Wp2z]);

[H,W]=freqz(b,a,'whole');

figure;

plot (W,abs(H));grid on;

Hrz=tf(b,a,1/(Wd*2*pi))

figure;

pzmap(Hrz)

Рис. 10 Діаграма нулів та полюсів фільтра.

Рис. 11 АЧХ смугового фільтра.


Рис. 12. ФЧХ смугового фільтра.

2.3 Моделювання роботи дискретного фільтра

Щоб перевірити правильність розрахунків промоделюємо роботу дискретного фільтра у середовищі MatLab. Для моделювання використаємо тестовий сигнал що складається з трьох гармонічних сигналів різної частоти, фази та амплітуди.

%-----------------Формирование исходного сигнала--------------------------%

k1=10;

k2=9;

k3=12;

phi1=pi;

phi2=pi/4;

phi3=pi/2;

W1=6000;

W2=10976;

W3=24387;

sign_freq=[W1 W2 W3];

sign_phase=[phi1 phi2 phi3];

sign_koeff=[k1 k2 k3];

Fs=Wd/(2*pi);

td=0:1/Fs:0.1;

Signal_digital=0;

for i=1:3

Signal_digital=Signal_digital+sign_koeff(i).*sin(sign_freq(i).*td);

end;

wdd=2*pi*Fs;

wd_mod=0:wdd/2/15671:wdd/2;

Sd_in=fft(Signal_digital);

Signd_out=filter(b,a,Signal_digital);

Sd_out=fft(Signd_out);

figure

hold on

plot(td(1,1:700), Signal_digital(1,1:700),'g-');

plot(td(1,1:700), Signd_out(1,1:700),'b-')

hold off;

grid on;

axis([0 0.08 -35 35]);

xlabel('t, c');

ylabel('Amplitude');

title ('Filtered and NOT filtered signals');


Рис. 13. Вхідний та вихідний сигнали.

2.4 Побудова спектрів вхідного та вихідного сигналів

Побудуємо спектри вхідного та вихідного сигналів. Для побудови ряду використаємо дискретне перетворення Фур’є. Припустимо, що у нас задано функцію дискретної змінної на рівномірній гратці, тобто задані значення функції fk для скінченної послідовності значень аргументу xk = kh – таблиця функції {fk; kh; k = 0::N} . Тут за допомогою  позначено крок гратки – відстань між сусідніми вузлами. Перетворення Фур’є такої функції можна означити, як суму


Наведені вище міркування про властивості значень нескінченного ряду Фур’є свідчать про недоцільність використання суми з кількох членів, більшою за кількість вузлів гратки. Можна також зауважити, що сума з більшою кількістю членів містила б більше інформації про функцію, ніж є в таблиці значень функції. Звичайно ж, обидва ці міркування не є доведеням можливості використання саме такої кількості членів – необхідно побудувати правило обчислення коефіцієнтів суми Фур’є і довести існування єдиного набору таких коефіцієнтів для функції дискретної змінної.

Для дійсних функцій і особливо при використанні програмних засобів, що не підтримують комплексних чисел, може бути доцільним використання дійсної форми перетворення Фур’є поданням функції у вигляді ряду по синусах та косинусах:

Для побудови спектрів використаємо середовище MatLab

k1=10;

k2=9;

k3=12;

phi1=pi;

phi2=pi/4;

phi3=pi/2;

W1=6000;

W2=10976;

W3=24387;

sign_freq=[W1 W2 W3];

sign_phase=[phi1 phi2 phi3];

sign_koeff=[k1 k2 k3];

Fs=Wd/(2*pi);

td=0:1/Fs:0.1;

Signal_digital=0;

for i=1:3

Signal_digital=Signal_digital+sign_koeff(i).*sin(sign_freq(i).*td);

end;

wd_mod=0:Wd/1000:Wd/2;

Sd_in=fft(Signal_digital);

Signd_out=filter(b,a,Signal_digital);

Sd_out=fft(Signd_out);

if size(wd_mod,2)<size(Sd_in,2)

dim=size(wd_mod,2);

else

dim=size(Sd_in,2);

end

figure;

plot(wd_mod(1,1:dim),abs(Sd_in(1,1:dim)),wd_mod(1,1:dim),abs(Sd_out(1,1:dim)));

grid on;

legend('Input signal','Output signal');

xlabel('Frequency');

ylabel('Amplitude');

title ('Amplitude spectrum signals before and after filtration by the digital filter');


Рис. 14. Спектри вхідного та вихідного сигналів.


Висновки

 

У результаті виконання курсового проекту «Проектування аналогових та цифрових фільтрів» я набув навичок у розробці аналогових та цифрових фільтрів, формуванні математичних моделей на основі перетворень Лапласа та z-перетворення, побудові та порівняльному аналізі частотних характеристик цифрових та аналогових фільтрів, застосуванні перетворення Фур’є до спектрального аналізу сигналів, застосуванні методики трансформації узагальненого фільтра нижніх частот до конкретного типу фільтра (ФВЧ, СФ, РФ) при різних способах їх реалізації (фільтри Баттерворта, Чебишева першого та другого роду, а також еліптичний фільтр).

В ході виконання курсового проекту була створена програма на мові середовища MatLab для моделювання роботи аналогового та цифрового смугового фільтра Чебишева ІІ роду, виконано моделювання та побудова графіків амплітудно-частотних характеристик(АЧХ), фазочастотних характеристик (ФЧХ) і діаграм нулів і полюсів.


Информация о работе «Порівняння характеристик аналогового та цифрового фільтрів»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 16960
Количество таблиц: 3
Количество изображений: 16

Похожие работы

Скачать
28445
20
15

... , обробка даних і зв’язок, системи автоматизації наукових експериментів, системи автоматизації проектування. В даній роботі розробляється мікропроцесорний пристрій системи автоматичного регулювання на базі МПК К580, який здійснює прийом, обробку і видачу сигналів. 1. Побудова аналогової схеми, що описується даним рівнянням На основі вихідного рівняння будуємо аналогову схему цифрового фі ...

Скачать
12412
0
3

... в одному синтезаторі декілька петель PLL. Проте багатопетлевий PLL-синтезатор є вельми дорогим і громіздким пристроєм, що стримує його широке застосування. Прямий цифровий синтез (DDS) Прямий цифровий синтез — відносно новий метод синтезу частоти, що з'явився на початку 70-х років минулого століття. Всі описані методи синтезу доступні розробникам вже десятиліття, але лише останнім часом DDS ...

Скачать
40137
2
20

... придушення внутрішньо-канальної завади пропонується використання спрямованих антен на БС і нахил ДС антенної системи. Зазначені підходи можливо реалізувати при використанні перспективних технологій, які будуть розглянуті нижче. 2. Переваги технології цифрового діаграмоутворення (ЦДУ) в зв’язку Останнім часом все більшого поширення набуває технологія цифрового діаграмоутворення (ЦДУ). Ним ...

Скачать
11816
1
3

... = 1, (0 – Fв1) = 0 – 6 кГц, m2 = 8, (0 – Fв2) = 0 – 1 кГц, Umax= 2 В. В процесі розробки необхідно обрати конфігурацію структурної схеми ПЗАС, виходячи з вищенаведених параметрів АЦІ. 1.1. проектування структури аналого-цифрового інтерфейсу розпочинається з визначення параметрів та вибору аналого-цифрового перетворювача, перш за все його розв’язувальної спроможності (РС інакше роздільної ...

0 комментариев


Наверх