3.4 Расчет гидравлического сопротивления кожухо-трубчатого теплообменника

Скорость движения горячего теплоносителя в трубах определили согласно [12,С.68]:

Wтр = 4 × Gтр × z / (П × d × n × rтр) (3.9)

где Gтр - массовый расход хлоргаза, кг/с;

z - число ходов;

d - внутренний диаметр трубки, м;

n - число труб в пучке;

rтр – плотность теплоносителя, текущего в трубах, кг/м3.

Массовый расход хлоргаза, Gтp, кг/с, проходящего в трубах, определили в формуле (3.6) настоящего расчета:

Gтp = G1 = 28,56 кг/с

Число ходов в теплообменнике приняли согласно ГОСТ 15120:

z = 1

Внутренний диаметр трубки приняли согласно ГОСТ 15120:

d = 0,021 м

Число труб в пучке приняли согласно ГОСТ 15120:

n = 465

Плотность теплоносителя, текущего в трубах, приняли согласно ГОСТ 15120:

rтр = 4,11

Скорость движения горячего теплоносителя, Wтр, м/с:

Wтр = 4 × 28,56 × 1 / (3,14 × 0,021 × 465 × 4,11) = 3,35 м/с

Число Рейнольдса определили согласно [12,С.13]:

Re = Wтp × dэ × r1 / m, (3.10)

где Wтp - скорость движения горячего теплоносителя в трубах, м/с;

dэ - эквивалентный диаметр, м;

r1 - плотность хлоргаза при его средней температуре, кг /м3;

m - динамическая вязкость.

Скорость движения горячего теплоносителя в трубах определили в формуле (3.9) настоящего расчета:

Wтр = 3,35 м/с

Эквивалентный диаметр для круга диаметром d, м, определили согласно [12,С.14]:

dэ = d (3.11)

где d - внутренний диаметр трубки, м.

Согласно ГОСТ 15120 диаметр трубки d, м:

d = 0,021 м

Согласно [12,С.14] приняли:

dэ = 0,021 м

Плотность хлоргаза при температуре минус 9, 65 °С составляет:

r1 = 4, 11 кг/м3

Динамическая вязкость хлоргаза m, Па×с, согласно [19,С.257] составляет:

m = 0,0000117 Па×с

Число Рейнольдса:

Re = 3,35 × 0,021 × 4,11 / 0,0000117 = 24712,69

Полученное значение числа Рейнольдса показывает, что движение газа в трубах является турбулентным.

В турбулентном потоке различают три зоны; для которых коэффициент трения рассчитывают по разным формулам:

а) для зоны гладкого трения, когда:

2320 < Re < 10/е, (3.12)

б) для зоны смешанного трения, когда:

10 / е < Re < 560 / е, (3.13)

в)для зоны, автомодельной по отношению к Re:

Re > 560/е, (3.14)

Для зоны гладкого трения коэффициент трения составит:

l = 0,316 / Re, (3.15)

Для зоны смешанного трения коэффициент трения составит:

l = 0,11 × (е + 68 / Re), (3.16)

Для зоны, автомодельной к числу Рейнольдса:

l = 0,11 × е (3.17)

В формулах (3.14) - (3.17) е является относительной шероховатостью и определяется согласно [12,С.14]:

е = D / dэ, (3.18)

где D - абсолютная шероховатость трубы, м;

dэ - эквивалентный диаметр, м.

Согласно [12,С.14] для новых стальных труб абсолютная шероховатость:

dэ = 0,00006 - 0,0001 м

Для расчета выбрали значение абсолютной шероховатости:

D = 0,0001 м

Относительная шероховатость трубы составляет:

е = 0,0001 / 0,021 = 0,0048

Для расчета коэффициента трения произвели:

10 / е = 10 / 0,0048 = 2083,33

560 / е = 560 / 0,0048 = 116666,66

Определили сравнение, для коэффициента трения:

l = 0,11 × ( е + 68 / Re ) (3.19)

Коэффициент трения X составил:

l = 0,11 × (0,0048 + 68 / 24712,69 ) = 0,0008


4 Механическая часть 4.1 Выбор конструкционных материалов для проведения реконструкции

Для изготовления обечайки конденсатора при условии, что теплообменный аппарат работает с неагрессивной средой, выбрали металлические листы из стали 16ГС ГОСТ 5520. Для изготовления трубок применили конструкционную углеродистую качественную сталь 20 ГОСТ 914.

4.1.1 Таблицы химического состава и механических свойств конструкционных материалов

Химический состав стали 16ГС приведен в таблице 4.1.

Механические свойства стали 16ГС приведены в таблице 4.2.

Таблица 4.1 - Химический состав стали 16ГС

с, Si, Mn, P, s,
0,12-0,18 0,40-0,70 0,90-1,20 0,035 0,04
Cr, Ni, Cu, As, N,
0,30 0,30 0,30 0,08 0,008

Таблица 4.2 - Механические свойства стали 16ГС

Термическая обработка

Твердость,

НВ

Временное

сопротивление разрыву, МПа

Предел текучести, МПа

Относительное

удлинение,

%

Прокат Более 450 Более 275 Более 21

Химический состав стали 20 приведен в таблице 4.3

Механические свойства стали 20 приведены в таблице 4.4

Таблица 4.3 - Химический состав стали 20

с, Si, МП, P, s,
0,17-0,24 0,17-0,37 0,35-0,65 0,035 0,04
Cr, Ni, Cu, As, N,
0,25 0,30 0,30 0,08

Таблица 4.4-Механические свойства стали 20

Термическая обработка Твердость НВ Временное сопротивление разрыву, МПа Предел текучести, МПа Относительно удлинение, %
Прокат 163 Более 390-490 Более 245 Более 25
4.2 Расчет на прочность элементов конденсатора 4.2.1 Расчет на прочность цилиндрической обечайки

Рабочее давление в конденсаторе Рраб, МПа, принимали согласно технологическим данным:

Рраб = 0,3 МПа

Гидростатическое давление столба жидкости Рг, МПа, определили согласно [17,С.8]:

Рг = rрас × g × Н (4.1)

где rрас - плотность рассола при температуре минус 28,5 °С, кг/м3;

g - ускорение свободного падения, м/с2;

Н - высота столба жидкости, м.

Плотность рассола при температуре минус 25,5 °С:

rрас = 1270 кг/м3

Ускорение свободного падения:

g = 9,81 м/с2

Высота столба жидкости определили как длину труб:

Н = 6 м

Гидростатическое давление в конденсаторе:

Рг = 1270 × 9,81 × 6 = 74752,2 Па

Расчетное давление:

Ррасч = Рраб + Рг,

Ррасч = 300000 + 74752 = 374752 Па

Нормальное допускаемое напряжение [s], МПа для стали 16ГС при температуре минус 28,5°С рассчитывали согласно [17,С.9] как для температуры плюс 20°С в рабочих условиях:

[s] = h × s (4.2)

где [s] - допускаемое напряжение, МПа;

h - поправочный коэффициент, учитывающий вид заготовки;

s - нормативное допускаемое напряжение при расчетной температуре, МПа.

Поправочный коэффициент h, учитывающий вид заготовки приняли согласно [17,С.10] как для листового проката:

h = 1,0

Нормативное допускаемое напряжение при температуре плюс 20 °С принимали согласно [17,С.11]:

s = 170 МПа

Допускаемое напряжение составит:

[s] = 1,0 × 170 = 170 МПа

Допускаемое напряжение при гидроиспытании:

[s] = sт / 1,1 (4.3)

где [s] - допускаемое напряжение при гидроиспытании, МПа;

sт - предел текучести, МПа.

Предел текучести принимали согласно [17,С.282]:

sт = 280 МПа

Допускаемое напряжение при гидроиспытании составило:

[s] = 280 / 1,1 = 254,55 МПа

Расчетную толщину стенки аппарата S', определили согласно [17,С.18]:

где S’ - расчетная толщина стенки обечайки, м;

Рр - рабочее давление внутри аппарата, МПа;

D - внутренний диаметр конденсатора, м;

[s] - допустимое напряжение, МПа;

j - коэффициент прочности сварного шва;

Ри - давление при гидроиспытании, МПа;

[s]и - допустимое напряжение при гидроиспытании, МПа.

Рабочее давление внутри аппарата Рр, МПа, приняли согласно производственных данных:

Рр = 0,3 МПа

Внутренний диаметр конденсатора D, м приняли согласно ГОСТ 15120:

D = 0,8 м

Допустимое напряжение [s], МПа, определили согласно уравнения (4.2) настоящего расчета:

[s] = 170 МПа

Коэффициент прочности сварного шва для автоматической дуговой сварки, принимали согласно [17,С.13]:

j = 1

Согласно уравнению (4.4) производим выбор:

S' = (0,3 × 0,8) / (2 × 1 × 170 - 0,3) = 0,003 м

S' = (0,5 × 0,8) / (2 × 1 × 254,55 - 0,5) = 0,002 м

Принимаем максимальное значение расчетной толщины стенки обечайки:

S’ = 0,003 м

Исполнительную толщину стенки обечайки S, м определили согласно [17,С.10]:

S = S’ + C1, (4.5)

где S’ - расчетная толщина стенки, м;

С1 - прибавка к расчетной толщине стенки, м.

Расчетную толщину стенки S’, м, определили в уравнении (4.4);

S’ = 0,003 м

Исполнительная толщина стенки составит:

S = 0,003 + 0,001 = 0,004 м

Согласно ГОСТ 380 принимаем исполнительную толщину S, м, стенки:

S = 0,005 м

Допускаемое рабочее давление [Р], МПа определили согласно [17,С.19]

[Р] = (2 × j × [s] × (S - C))/(D + S - С), (4.6)

где [Р] - допускаемое рабочее давление, МПа;

j - коэффициент прочности сварного шва;

[s] - допускаемое напряжение в рабочих условиях, МПа;

S - исполнительная толщина стенки, м;

С - прибавка на коррозию, м;

D - внутренний диаметр конденсатора, м.

Коэффициент прочности сварного шва j, принимали согласно [17,С.10]:

j = 1,0

Исполнительную толщину стенки 3, м приняли согласно ГОСТ 380:

S = 0,005 м

Внутренний диаметр конденсатора D, м, принимали согласно ГОСТ 15120:

D = 0,8 м

Допускаемое давление при рабочих условиях составит:

[Р] =[2 × 1,0 × 170 × 10 × (0,005 - 0,001)]/(0,8 + 0,005 - 0,001) = 1691542,6 Па = 1,7 МПа

Допускаемое давление при гидроиспытании [Р]и, МПа определили согласно [17,С.19]:

[Р]и = (2 × j × [s]и × (S - С)) / (D + S - C), (4.7)

где j - коэффициент прочности сварного шва;

[s]и - допускаемое напряжение при гидроиспытании, МПа;

S - исполнительная толщина стенки конденсатора, м;

С - прибавка на коррозию, м;

D - внутренний диаметр конденсатора, м.

Коэффициент прочности сварного шва j, приняли согласно [17,С.10]:

j = 1,0

Допускаемое давление при гидроиспытании составит:

[Р]и = (2 × 1,0 × 254,55 × 10 × (0,005 - 0,001) / (0,8 + 0,005 - 0,001) =

= 213656З,8 Па = 2,13 МПа

4.2.2 Расчет фланцевых соединений

Фланец приняли типа "шип-паз".

Расчетную температуру фланцев tф, °C, приняли согласно [17,С.92]:

tф = t, (4.8)

где t - температура рассола в конденсаторе, С.

Температуру рассола в конденсаторе t, °C, приняли согласно технологическим данным по производству жидкого хлора:

t = минус 28,5 °С

Расчетная температура фланцев tф, °С:

tф = минус 28,5 °С

Расчетную температуру болтов и обечайки tб, °C, определяли согласно [17,С.92]:

tб = 0,97 × t, (4.9)

где t - температура рассола в конденсаторе, °С.

Расчетная температура болтов и обечайки tб, °C:

tб = 0,97 × ( минус 28,5) = минус 27,85 °С

Допускаемое напряжение для стальных болтов (шпилек) [s]б, МПа приняли согласно [17,С.93]:

[s]б = 130 МПа

Толщину втулки фланца S, м определили для приварного встык согласно [17,С.93]:

S < Sф < 1,3 × S (4.10)

где S - исполнительная толщина стенки обечайки, м;

Sф - толщина втулки фланца, м.

Исполнительную толщину стенки обечайки S, м приняли согласно ГОСТ 380:

S = 0,005 м

Для нахождения толщины втулки фланца определили условия уравнения (4.10) настоящего расчета:

S = 0,005 м

1,3 × S = 0,0065 м

Толщину втулки фланца Sф, м приняли:

Sф = 0,006 м

Исполнительную толщину стенки обечайки и основания втулки приварного встык фланца S1, м определили согласно [17,С.93]:

S1 = b1 × Sф (4.11)

где b1 - коэффициент;

Sф - толщина втулки фланца, м.

Коэффициент b1, определяемый согласно [17,С.95], приняли:

b1 = 1,8

Исполнительная толщина стенки обечайки и основания втулки приварного встык фланца составит:

S1 = 1,8 × 0,006 = 0,0108 м

Высоту втулки фланца для приварного встык фланца hв, м, определили согласно [17,С.94]:

hв > (1/i) × (S1 - S ), (4.12)

где i - уклон втулки;

S1 - исполнительная толщина стенки обечайки у основания втулки, м;

S0 - толщина втулки фланца, м.

Уклон втулки i приняли согласно [17,С.94]:

i = 0,33

Высота втулки фланца для приварного встык фланца составит:

hв > (1/0,33) × (0,0108 - 0,006) = 0,0144 м

Приняли высоту втулки фланца;

hв = 0,015 м

Диаметр болтовой окружности фланца Dб, м, определили согласно [17,С.95]:

Dб > D + 2 × (S1 + dб + u) (4.13)

где D - внутренний диаметр конденсатора, м;

S1 - исполнительная толщина стенки обечайки у основания втулки, м;

dб - наружный диаметр болта, м;

и - нормативный зазор между гайкой и втулкой, м.

Внутренний диаметр фланца D, м приняли:

D = 0,3 м

Наружный диаметр болта dб, м выбрали согласно[17,С.94]:

dб = 0,02 м

Нормативный зазор между гайкой и втулкой u, м определили согласно [17,С.95]:

U = 0,005 м

Диаметр болтовой окружности фланца составит:

Dб > 0,8 + 2 × (0,0108 + 0,02 + 0,005) = 0,37 м

Принимаем диаметр болтовой окружности фланца Dб, м:

Dб = 0,4 м

Наружный диаметр фланцев Dh, м принимаем согласно [17,С.95];

Dh > Dб + а (4.14)

где Dб - диаметр болтовой окружности фланца, м;

а - конструктивная добавка для размещения гаек по диаметру, м.

Конструктивную добавку для размещения гаек по диаметру а, м, определили согласно [17,С.95]:

а = 0, 04 м

Наружный диаметр фланцев Dh, м:

Dн > 0,4 + 0,04 = 0,44 м

Приняли наружный диаметр фланцев Dh, м:

Dh = 0,45 м

Наружный диаметр прокладки Dн.п., м, для приварных встык фланцев определили согласно [17,С.96]:

Dн.п. = Dб – е (4.15)

где Dб - диаметр болтовой окружности фланца, м;

е - нормативный параметр, м.

Нормативный параметр для плоских прокладок е, м, определили согласно [17,С.95]:

е = 0,03 м

Наружный диаметр прокладки Вн.п., м, для приварных встык фланцев составит:

Dн.п. = 0,4 - 0,03 = 0,37 м

Для аппарата диаметром менее 1,0 м выбрали плоские неметаллические прокладки.

Средний диаметр прокладки Dc.п., м, определили согласно [17,С.95]:

Dс.п. = Dн.п. – b (4.16)

где Dн.п. - наружный диаметр прокладки, м;

b - ширина прокладки, м.

Ширину прокладки b, м принимали согласно [17,С.96]:

b = 0,015 м

Средний диаметр прокладки составит:

Dс.п. = 0,37 - 0,015 = 0,355 м

Количество болтов nб, шт, необходимое для обеспечения герметичности соединения определили согласно [17,С.96]:

nб > 3, 14 × Dб / tш (4.17)

где Dб - диаметр болтовой окружности;

tш - рекомендуемый шаг расположения болтов.

Рекомендуемый шаг расположения болтов tш, м выбрали в зависимости от давления согласно [17,С.97]:

tш = (4,2 - 5) × dб (4.18)

где dб - наружный диаметр болта, м.

Наружный диаметр болта tб, м, выбрали согласно

tб = 0,02 м

Рекомендуемый шаг расположения болтов составит:

tш = (4,2 - 5) × 0,02 = 0,84 - 0,1 м

Принимаем шаг расположения болтов:

tш = 0,1 м

Количество болтов nб, штук, необходимое для обеспечения герметичности:

nб > 3,14 × 0,4/0,1 = 12,56 штук

Количество болтов приняли 16 штук.

Ориентировочную высоту фланца hф, м, определили согласно [17,С.96]:

hф > lф × D × Sэк (4.19)

где lф - коэффициент;

D - внутренний диаметр конденсатора, м;

Зэк - эквивалентная толщина втулки, м.

Коэффициент lф приняли согласно [17,С.97]:

lф = 0,41

Внутренний диаметр конденсатора D, м, определили согласно ГОСТ 15120:

D = 0,8 м

Эквивалентную толщину втулки Sэк, м, определили согласно [17,С.96]:

(4.20)

где SФ - толщина втулки фланца, м;

hB - высота втулки фланца приварного встык, м;

b1 - коэффициент;

D - внутренний диаметр конденсатора, м.

Эквивалентная толщина втулки Sэк, м:

Высота фланца nф, м:

hф > 0,41 × 0,8 × 0,007 = 0,03 м


Информация о работе «Реконструкция теплообменника в цехе N2 ЗАО "Каустик" с целью повышения эффективности»
Раздел: Промышленность, производство
Количество знаков с пробелами: 142540
Количество таблиц: 23
Количество изображений: 10

0 комментариев


Наверх