3.  за знайденими l, k обчислити нові значення елементів таблиці за формулами

4. 

x_{ij}' = \begin{cases}x_{ij} - \frac{x_{lj}}{x_{lk}} x_ik, & \mbox{if } i \neq l; \\\frac{x_{lj}}{x_{lk}}, & \mbox{if } i = l;\end{cases} (12)

i = 1, \dots, m + 1,\quad j = 0, 1, \dots, n,


де x_{i0} = \bar{x}_i,\; x_{m+1\, 0} = \bar{z}_0,\; x_{m+1\, j} = \Delta_jта перейти до виконання операції (1) з новими значеннями всіх xij = x'ij.

Перетворення (12) замінює вектор коефіцієнтів Xk = (x1k, …, xmk) на одиничний вектор Xk з xlk = 1. В силу монотонного збільшення x0 повернення до вже пройденого плану неможливе, а із скінченності кількості опорних планів випливає скінченність алгоритму.

Початковий опорний план з одиничним базисом можна отримати, розв'язавши описаним алгоритмом допоміжну задачу

\sum_{i=1}^m (- y_{n+i}) \to \max,

при обмеженнях

\sum_{j=1}^n a_{ij}x_{j} + y_{n+i} = b_i,\quad i = 1, \dots,

y_{n+1} \geq 0, i = 1, \dots, m;

x_j \geq 0, j = 1, \dots, n,

яка містить одиничний базис, який складається із векторів An+1, …, An+m. Цим векторам відповідають штучні змінні із значеннями \bar{y}_{n+i} = b_i, i = 1, …, m. Якщо в оптимальному розв'язку цієї задачі \sum_{i=1}^m y_{n+i} > 0, вихідна задача не має розв'язку. Якщо ж \sum_{i=1}^m y_{n+i} = 0та задача невироджена, оптимальний базис складається лише тільки із векторів вихідної задачі, які за формулами (12) перетворені в одиничну матрицю. Якщо задача має невироджені плани, значення z0 може не збільшуватись на ряді ітерацій. Це відбувається через те, що значення відповідних \bar{x}_lдорівнює нулю та визначається неоднозначно. В таких випадках монотонність методу порушується і може трапитись зациклювання, тобто, повернення до вже пройденого базису. Невелика зміна вектора обмежень задачі, яка полягає в заміні величин bi на bi + εi, де εi достатньо малі, при вдалому виборі εi не змінюють множину векторів оптимального опорного плану вихідної задачі і робить її невиродженою.

Описаний вище алгоритм називається першим (або прямим) алгоритмом симплекс-методу. Також відомий другий алгоритм (алгоритм із оберненою матрицею). В ньому перетворюється лише матриця A-1, обернена до базисної матриці.


3. Прикладний розділ

3.1 Вирішення задачі лінійного програмування симплекс-методом

Для розробки математичної моделі задачі позначимо:

x1 – кількість продукту А;

x2 – кількість продукту В;

Цільова функція буде мати вид:

Z=x1+2x2¦mах

Система обмежень:

3 x1+3 x2 <= 15 2 x1+6 x2 <= 18 4 x1<= 16 x1+2x2 <= 8 Xj>=0, j=1..2

Зведення задачі до канонічного виду: Zmax = x1+2x2 при умовах:

3x1+3x2+x3 = 15 2x1+6x2+x4 = 18 4x1+x5 = 16 x1+2x2+x6 = 8 Xj>=0, j=1..6

Таблиця 5.

Базис С План 1 2 0 0 0 0
X3 0 15 3 3 1 0 0 0
X4 0 18 2 6 0 1 0 0
X5 0 16 4 0 0 0 1 0
X6 0 8 1 2 0 0 0 1
Zj-Cj   0 -1 -2 0 0 0 0

Таблиця 6.

Базис С План 1 2 0 0 0 0
X3 0 6 2 0 1 -0,5 0 0
X2 2 3 40238 1 0 40330 0 0
X5 0 16 4 0 0 0 1 0
X6 0 2 40238 0 0 -0,3333 0 1
Zj-Cj   6 -0,3333 0 0 40238 0 0

Таблиця 7.

Базис С План 1 2 0 0 0 0
X1 1 3 1 0 40210 -0,25 0 0
X2 2 2 0 1 -0,1667 40269 0 0
X5 0 4 0 0 -2 1 1 0
X6 0 1 0 0 -0,1667 -0,25 0 1
Zj-Cj   7 0 0 40330 40269 0 0

Відповідь: Zmax =7, Xопт =(3 ; 2 ; 0 ; 0 ; 4 ; 1).

Це свідчить про те, що максимальний прибуток підприємства буде дорівнювати 7 грн., а виробництво продукції А і В складає відповідно 3 і 2 одиниці.


Информация о работе «Економічні задачі лінійного програмування і методи їх вирішення»
Раздел: Информатика, программирование
Количество знаков с пробелами: 25131
Количество таблиц: 7
Количество изображений: 6

Похожие работы

Скачать
12465
2
0

... програмування та її економіко – математичної моделі, опис функцій і команд у вирішенні задач лінійного програмування засобами Exel, а також рішення конкретної задачі за допомогою ПК. 1. Побудова економіко–математичної моделі Загальна модель задачі математичного програмування має такий вигляд: У структурі моделі (1.1) можна виділити 3 елементи: 1) Набір керованих змінних x1, x2, ... x ...

Скачать
26156
0
3

... і (усі сj’ ≥0), але не задовільняє критерії допуску (не всі ві ≥0). Варіант симплекс метода, який приміняється для рішення таких задач, називається двоїстим симплекс методом. За його допомоги рішаються задачі лінійного програмування виду:  (4.3.1) де система обмежень має такий вигляд і всі приведені коефіцієнти цільової функції сj’ ≥0, і=1,n. При цьому умова ві ≥0, ...

Скачать
15588
18
5

2х1+5х2 + 15х3+ 10х4 досягає максимуму при системі обмежень: Розв'язуємо задачу лінійного програмування симплексним методом. Введемо балансні змінні х5 ≥ 0, х6≥ 0, х7≥ 0. Їх величина поки що невідома, але така, що перетворює відповідну нерівність у точну рівність. Після цього, задача лінійного програмування набуде вигляду: ∫ = 12х1+5х2 + 15х3+ 10х4 → max при ...

Скачать
182691
25
29

... – відпускна ціна i-го заводу j-й продукції; - закупівельна ціна i-го заводу j-й продукції, - шуканий обсяг закупівель на i-м заводі j-й продукції.   2.5 Перевірка моделі оптимізації на контрольному прикладі В цьому підрозділі на прикладі підприємства ТОВ "Гермес-Груп" розрахуємо модель (2.4.5) за допомогою електроних таблиць MSEcxel. Цільова функція має вигляд: де - об’єм закупівлі; ...

0 комментариев


Наверх