Аппарат экспрессии генов и его логика


1. Основные положения процесса экспрессии генов

Экспрессия генов – это процесс реализации информации, закодированной в структуре ДНК, на уровне РНК и белков. Прежде чем переходить к детальному описанию и анализу этих процессов, мы вкратце рассмотрим суть экспрессии генов – ее механизм и регуляцию.

а. Транскрипция ДНК в РНК

Экспрессия всех генов начинается с транскрипции их нуклеотидной последовательности, т.е. перевода ее на язык РНК. При этом определенный участок одной из двух цепей ДНК используется как матрица для синтеза РНК путем комплементарного спаривания оснований. В результате транскрипции генов, в которых закодирована структурная информация о белках, образуются молекулы мРНК; другие гены кодируют молекулы РНК, являющиеся частью аппарата, необходимого для трансляции мРНК с образованием белков. У прокариот, например Е. coli, ДНК транскрибируется с помощью одного фермента – ДНК-зависимой РНК-полимеразы, который участвует в синтезе всех типов РНК. В отличие от прокариот эукариоты имеют три разные ДНК-зависимые РНК-полимеразы, каждая из которых ответственна за транскрипцию генов, кодирующих разные типы клеточных РНК. Несмотря на то, что механизмы синтеза РНК и матричного копирования для всех РНК-полимераз идентичны, каждый фермент узнает в матрице ДНК свои характерные особенности, определяющие сайты инициации, терминации и регуляции транскрипции.

б. Соответствие между нуклеотидными триплетами и аминокислотами

Генетический код устанавливает соответствие между нуклеотидной последовательностью данной мРНК и аминокислотной последовательностью синтезируемой на ней полипептидной цепи. Размер единиц кодирования и сами эти единицы, однозначно задающие ту или иную аминокислоту, практически одинаковы у всех живых организмов. Более того, основные принципы и механизмы перевода генетических посланий также универсальны.

Генетический словарь содержит 64 кодона, каждый из которых образован тремя последовательными нуклеотидами. 61 из 64 кодонов детерминируют 20 аминокислот, обнаруженных в белках, один определяет начало большинства последовательностей, кодирующих белки, и три обозначают окончания этих последовательностей.

Отличительной особенностью генетического кода является то, что каждый кодон кодирует только одну аминокислоту, т.е. код однозначен. Следовательно, зная словарь и правила пользования им, можно перевести нуклеотидную последовательность мРНК в определенную аминокислотную последовательность. Но генетический код является вырожденным. Это означает, что одной аминокислоте могут соответствовать несколько кодонов. Вырожденность генетического кода приводит к тому, что нельзя однозначно перевести аминокислотную последовательность данного белка в нуклеотидную последовательность соответствующей мРНК.

в. Расшифровка кода с помощью тРНК

Аминокислоты не взаимодействуют с соответствующими им кодонами непосредственно. Каждая аминокислота вначале связывается с адаптером – родственной тРНК, и образующаяся при этом аминоацил-тРНК узнает «родственный» кодон путем комплементарного спаривания оснований. Таким образом, декодирование осуществляется с помощью спаривания оснований триплетных кодонов мРНК с триплетными антикодонами в аминоацил-тРНК.

Присоединение аминокислот через карбоксильные группы к родственным тРНК катализируют ферменты, называемые аминоацил-тРНК-синтетазами. При связывании тРНК с аминокислотой карбоксильная группа последней активируется, и в результате образование пептидных связей становится энергетически выгодным. Энергия же, необходимая для активации аминокислоты при присоединении ее к тРНК, поступает от гидролиза АТР.

Присоединение аминокислот к родственным тРНК осуществляется с помощью специфических ферментов. Так, тирозил-тРНК-синтетаза присоединяет L-тирозин только к тем тРНК, которые могут спариться с тирозиновым кодоном. Аналогично лейцил-тРНК-синтетаза катализирует присоединение лейцина к молекулам тРНК, которые узнают кодоны лейцина. Таким образом, специфичность декодирования обеспечивается двумя реакциями: точным присоединением каждой аминокислоты к родственной ей тРНК и комплементарным спариванием антикодонов аминоацил-тРНК с соответствующими им кодонами в мРНК.

г. Правильная инициация трансляции

Имеются три «рамки считывания», при которых может осуществляться перевод последовательных нуклеотидных триплетов мРНК в аминокислоты. Правильная инициация трансляции чрезвычайно важна для точной расшифровки генетического кода. Выбор рамки считывания зависит от того, какое сочетание из трех последовательных нуклеотидов выбрано в качестве первого кодона. Ниже приведены три возможные рамки считывания для последовательности GUACGUAAGUAAGUAUGGACGUA:

Рамка считывания 1 GUA CGU AAG UAA GUA UGG ACG

Рамка считывания 2 G UAC GUA AGU AAG UAU GGA CGU

Рамка считывания 3 GU ACG UAA GUA AGU AUG GAC GUA

Обычно аминокислотной последовательности кодируемой полипептидной цепи соответствует только одна из рамок. Следовательно, должен существовать какой-то способ инициации трансляции с правильной рамкой считывания. У всех организмов, изученных к настоящему времени, – бактерий, вирусов и эукариот – правильная рамка считывания определяется с помощью механизма, распознающего специфический кодон, который детерминирует концевую аминокислоту синтезируемого белка. Почти всегда таким кодоном является триплет AUG, отвечающий метионину. Поэтому образующийся полипептид неизменно содержит на N-конце метионин, но при последующем удалении аминоконцевой последовательности на N-конце конечного белкового продукта оказывается аминокислота, находящаяся изначально внутри синтезированной полипептидной последовательности. В рассмотренном выше примере кодон AUG, с которого может начаться транскрипция, содержит рамка считывания 3.

д. Трансляция кодонов и соединение аминокислот

Последовательное спаривание разных аминоацил-тРНК с кодонами мРНК и рост полипептидной цепи осуществляются с помощью целой серии взаимно согласованных реакций. Одним из главных участников этого в высшей степени скоординированного процесса является рибосома – особый мультиферментный комплекс, состоящий из нескольких видов РНК и множества белков. Кроме того, целая армия ферментов и различных факторов катализирует мириады химических событий, необходимых для успешного синтеза белка.

Рибосомы, несущие особую инициаторную метионил-тРНК, находят инициаторный кодон в мРНК, AUG, и связываются с ним. Затем с рибосомой связывается аминоацил-тРНК, соответствующая второму кодону, и при участии рибосомной ферментативной активности остаток метионина соединяется со второй аминокислотой, все еще связанной со «своей» тРНК. В результате образуется дипептидил-тРНК. По мере продвижения рибосомы по цепи мРНК и считывания каждого последующего кодона полипептидная цепь удлиняется на одну аминокислоту за один шаг. Элонгация прекращается в тот момент, когда рибосома достигает одного из трех терминирующих кодонов. Завершенная полипептидная цепь тотчас же высвобождает последнюю тРНК, и происходит разделение рибосомы и мРНК.

е. Регуляция экспрессии генов на разных этапах образования РНК и белка

Клетки про- и эукариот обладают способностью к дифференциальной регуляции экспрессии генов. Так, при определенных условиях многие гены вообще не экспрессируются, а степень экспрессии других различается на несколько порядков. Изменение условий может привести к активации «молчавших» ранее генов и репрессии активно работавших. Подобная способность позволяет клеткам приспособить свои фенотипы к самым разнообразным условиям окружающей среды и физиологическим воздействиям. Дифференцированная экспрессия одного генома у многоклеточных организмов обусловливает развитие огромного множества типов клеток, имеющих специфические функции, из одной или нескольких зародышевых клеток.

Экспрессия генов, как правило, регулируется на уровне образования РНК. Обычно регулируемым этапом является инициация транскрипции, при этом регуляция осуществляется либо с помощью репрессорных белков, предотвращающих транскрипцию, либо с помощью активаторных, необходимых для ее начала. В первом случае транскрипция начинается только после того, как инактивируется репрессорный белок. Во втором ген транскрибируется лишь тогда, когда белок-активатор находится в соответствующем функциональном состоянии. В регуляции транскрипции генов участвуют не только репрессорные и активаторные белки. В некоторых случаях сами белки – продукты генной экспрессии – оказываются регуляторами транскрипции собственных генов. Эффективность транскрипции зависит также от конформационного состояния ДНК или РНК. Кроме того, регуляция синтеза РНК может осуществляться путем контроля скорости ее элонгации или с помощью «стоп-сигнала» в транскрибируемой последовательности, который может остановить транскрипцию гена. Модификация и / или процессинг, которые могут предшествовать образованию зрелой функциональной РНК, также регулируются.

Экспрессия генов может регулироваться и на уровне трансляции мРНК с образованием белков. И в этом случае специфическая регуляция, как правило, осуществляется на начальном этапе декодирования. Однако контроль может осуществляться и на разных этапах сборки полипептидной цепи. Более того, синтез тех белков, которые претерпевают посттрансляционные модификации или транспортируются к местам своего назначения внутри клетки, может регулироваться на каждом из этих этапов.

Позднее, когда мы проанализируем эти процессы подробнее, мы увидим, что механизмы регуляции экспрессии генов весьма разнообразны, многочисленны и очень сложны. И хотя многим из них присущи общие черты, тонкие механизмы регуляции всегда уникальны для данного гена, определенного физиологического состояния организма и условий окружающей среды. Анализ регуляторных механизмов бактериальных систем позволил выявить широкий спектр способов регуляции и координации экспрессии генов. Однако исследование механизма контроля экспрессии генов в клетках эукариот только начинается, а процессы, ответственные за дифференцировку многоклеточных организмов, пока остаются невыясненными.


Информация о работе «Аппарат экспрессии генов и его логика»
Раздел: Биология
Количество знаков с пробелами: 85334
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
611708
8
6

... в отечественной теории и практике психологических измерений. Хотя концепт осмысленности измерения развивается с трансформацией идей Стивенса и разработкой проблем статистики и логики, его положения относительно шкалирования, по проблемам измерений в психологии и связанной с ними осмысленностью измерений требуют, на наш взгляд, критического анализа привычной практики использования психологического ...

Скачать
584410
0
0

... , вызванные динамическими му-тациями.-----------------------T-----------T-------T-----T------T------T----------------------¬ Болезнь, номер по ¦ Ген, лока-¦Триплет¦Норма¦Прему-¦Мута- ¦Литература ¦ МакКьюсику (MIM) ¦ лизация ¦ ¦ ¦тация ¦ция ¦ ¦ -----------------------+-----------+-------+-----+------+------+----------------------+ Синдром ломкой X-хро- ¦FMR1, FRAXA¦(CGG)n ...

Скачать
78738
0
3

... результаты были получены благодаря широкому использованию в лабораторных тестах генетически охарактеризованных животных, а также применению основных методов анализа генетических различий. В настоящее время исследование когнитивных способностей животных в этом тесте является одним из ведущих подходов в оценке особенностей поведения трансгенных животных и мышей-нокаутов. Детальнее с этими вопросами ...

Скачать
124669
0
0

... к основному тону, к тонике. Из обостренности интонации вводного тона среди полутонов развивается еще ряд важных для формы, как процесса интонирования, следствий: в отношении ладовом стирается тетрахордность, давнее наследие средиземноморской музыкальной культуры, и звукоряд европейский становится интонационным единством — гаммой; отношении эволюции гармонии возникает чувство доминантности, все ...

0 комментариев


Наверх