Цветные металлы и сплавы

183419
знаков
2
таблицы
1
изображение

7.3. Цветные металлы и сплавы

Цветные металлы широко применяются в промышленности, несмотря на сравнительно высокую их стоимость. К цветным металлам относятся: медь, алюминий, магний и др.

Медь - металл красноватого цвета, плотность 8,93 г/см3, температура плавления 1083°С. Наиболее ценные свойства меди - высокая электропроводность, пластичность, теплопроводность, повышенная коррозионная стойкость. Медь широко применяется в электропромышленности, а также для получения различных сплавов, используемых в машиностроении.

Основные марки меди: М00, МО, М1, М2, МЗ, М4.

Алюминий - легкий серебристо-белый металл, плотность 2,7 г/см3, температура плавления 658 °С. Он обладает высокой электропроводностью, хорошей пластичностью и коррозионной стойкостью, поддается обработке давлением и прокатывается в тонкую фольгу. Алюминий служит для изготовления электропроводов, посуды, фольги, а также получения многих сплавов, применяемых в промышленности. В чистом виде алюминий используется мало, так как он имеет невысокие механические свойства. Основные марки алюминия: А999, А995, А99, А97, А95.

Магний - блестящий белый металл, плотность 17,4 г/см3, температура плавления 650°С. Магний употребляется для получения легких сплавов, обладающих высокими механическими свойствами (сплавы с алюминием, марганцем, цинком). Основные марки магния: Мг1, Мг2.

Цветные сплавы. Как уже было сказано ранее, цветные металлы (медь, алюминий, магний и пр.) в чистом виде имеют ограниченное применение. Для улучшения их механических, технологических и других свойств из цветных металлов готовят различные цветные сплавы: латуни, бронзы, алюминиевые и др.

Наиболее распространенными в промышленности сплавами цветных металлов являются следующие.

Латунь - сплав меди с цинком. По сравнению с чистой медью она имеет повышенную прочность, пластичность и твердость, а также обладает большей коррозионной стойкостью и жидкотекучестью. Латунь служит для изготовления листов, проволоки, литой и штампованной арматуры, посуды и т. д.

Основные виды латуни: литейные (для фасонного литья) и обрабатываемые давлением. Латунь обозначается буквой Л и цифрой, указывающей процент содержания меди в сплаве. Например, марка латуни Л62 обозначает, что в ней содержится около 62% меди.

Наряду с простой применяется также специальная латунь, в состав которой входят железо, марганец, никель, олово и др. По прочности некоторые латуни не уступают углеродистой стали.

Специальная латунь кроме буквы Л маркируется условными обозначениями легирующих элементов: Ж - железо, Мц - марганец, Н - никель, О - олово, К – кремний, С —свинец. Количество элементов указывается цифрами. Например, марка ЛС59-1 обозначает свинцовисту латунь, в которой содержится 59% меди, 40% цинка и 1% свинца.

Наиболее часто употребляются простые латуни Л62, Л68 и специальные ЛМц58, ЛС59-1, ЛО62-1 и др.

Бронза - сплав меди с оловом, свинцом, кремнием, марганцем и некоторыми другими элементами. Бронзы обладают высокой коррозионной стойкостью, жидкотекучестью и высокими антифрикционными свойствами. В зависимости от легирующих элементов, входящих в сплав, бронзы делят на оловянные, алюминиевые, марганцевые, кремниевые, свинцовые и др.

Оловянная бронза имеет повышенную коррозионную стойкость, жидкотекучесть и обладает хорошим антифрикционными свойствами. Она применяется в основном для отливки подшипников и других подобных дета лей и обозначается буквами БрО с цифрами, указывающими содержание в ней олова в процентах. Основные марки оловянной бронзы: БрО10 БрО14, БрО20.

А л ю м и н и е в а я бронза по сравнению с оловянной имеет большую пластичность, коррозионную стойкость и лучше сопротивляется износу, но обладает более низкими литейными свойствами.

Добавление в алюминиевую бронзу железа, никеля и марганца повышает ее коррозионную стойкость и механические свойства. Такая бронза используется для изготовления фасонного литья, арматуры, зубчатых колес и других деталей. Основные марки алюминиевой бронзы БрАЖ9-4, БрАЖН 10-4-4.

М а р г а н ц е в а я бронза обладает высокой пластичностью, хорошо сопротивляется коррозии, но имеет сравнительно невысокие механические свойства и служит в основном для изготовления паровой арматуры. Основной маркой, марганцевой бронзы является БрМц5.

К р е м н и е в а я бронза характеризуется высокой пластичностью и хорошими литейными свойствами. Для увеличения коррозионной стойкости в нее добавляют марганец, а для улучшения антифрикционных свойств - свинец. Из кремниевой бронзы изготовляют пружинящие контакты, проволоку и т. д. Наиболее распространена бронза марки БрКМцЗ-1.

Б е р и л л и е в а я бронза обладает высокой упругостью, износоустойчивостью и твердостью. Бронза марки БрБ2 употребляется для изготовления пружин, износоустойчивых деталей и т. д.

Бронзы маркируются следующим образом: Бр – бронза, последующие буквы обозначают легирующие элементы, цифры - процентный состав олова и других элементов. Например, марка БрОЦС-5-5—5 обозначает, что в бронзе содержится 5% олова, 5% цинка, 5% свинца, остальное медь.

С и л у м и н - сплав алюминия с кремнием, обладает хорошими литейными свойствами и широко применяется для всевозможных отливок. По сравнению с алюминием имеет лучшие механические свойства и повышенную плотность. Основные марки силумина: АЛ2, АЛЗ, АЛ4, АЛ5, АЛ9.

Д ю р а л ю м и н - сплав алюминия с медью, магнием и марганцем, Медь и магний при термической обработке увеличивают прочность сплава, а марганец - твердость и коррозионную стойкость. Дюралюмин подвергают терми-ческой обработке для повышения его механических свойств, которые при этом приближаются к свойствам среднеуглеродистой стали. Особенно распространен этот сплав в авиационной промышленности. Основные марки дюралю-мина: Д1, Д6, Д16, Д18.

М а г н и е в ы е сплавы - сплавы магния с алюминием, цинком, марганцем и другими элементами. Литейные свойства магниевых сплавов ниже алюминиевых, однако благодаря своей малой плотности они часто применяются в авиастроении, радиопромышленности и т. д. Прочность магниевых сплавов может быть повышена путем термической обработки. Основные марки магниевых сплавов: МЛ4, МЛ5.

Твердые сплавы. Твердые сплавы применяют для изготовления режущих инструментов, предназначенных для обработки металлов с высокими скоростями резания (от 100 до 1200 м/мин и более). Твердые сплавы получают спеканием порошков вольфрама, титана, кобальта и угля при температуре 1500—1550°С. Пластинки из твердого сплава обладают твердостью НRА87 - 90, малой теплопроводностью и низким коэффициентом расширения при нагреве.

Твердые сплавы вольфрамовой группы предназначены для обработки хрупких материалов, например чугуна, бронзы и других металлов. Сплавы этой группы обозначаются буквой В: ВК2, ВКЗ, ВК6, ВК8, ВК11 и др. (2 -11% кобальта и остальное - карбиды вольфрама). В настоящее время находят широкое применение твердые сплавы с более мелкозернистой структурой - ВКЗМ, ВК6М, ВК8М. Твердые сплавы вольфрамо-титановой группы применяются для обработки стали и обозначаются буквой Т - Т15К10, Т15К6, Т14К8, Т15К6Т, ТЗОК4, Т60К6 и др. (5 - 60% карбидов титана, 6 - 10% кобальта, остальное - карбиды вольфрама).

Введение карбида тантала в твердые сплавы увеличивает сопротивление к трещинообразованию при резких сменах температуры, и прерывистом резании, повышает стойкость и позволяет применять скорости резания в 1,5 - 2 раза выше, чем при использовании инструментов и обычных сплавов. К титано-тантало-вольфрамовой группе относятся марки сплавов ТТ7К12, ТТ7К15, Т5К12В и др.

Минералокерамические твердые сплавы обладают твердостью НRА 92 - 93 и сохраняют режущие свойства при температуре до 1200°С. Этот инструментальный материал не содержит таких дефицитных и дорогостоящих материалов, как вольфрам, кобальт и титан. Его основой является спеченная окись алюминия. Из минералокерамики изготовляют пластинки двух марок: ТВ-48 (термокорунд) и ЦМ-332 (микромит), которые также применяются при различных видах обработки, где используется инструмент с механическим креплением пластинок.


Информация о работе «Основы проектирования и конструирования»
Раздел: Промышленность, производство
Количество знаков с пробелами: 183419
Количество таблиц: 2
Количество изображений: 1

Похожие работы

Скачать
20859
8
17

... масштабе (на чертеже) равны: ; ; ; , здесь и далее величина в скобках обозначает размер в миллиметрах на чертеже. ПЛАН СКОРОСТЕЙ Построение планов скоростей и ускорений проводится на основе последовательного составления векторных уравнений для точек звеньев механизма, начиная с ведущего звена, угловая скорость w1 которого задана. Находим численное значение скорости точки B из выражения: ...

Скачать
12983
22
2

... существенные случайные независимые отклонения при изготовлении штырей. Конструирование преобразователей фильтров на ПАВ. При конструировании фильтров на ПАВ необходимо решить ряд вопросов, связанных с вторичными эффектами, к числу которых в первую очередь следует отнести эффекты отражения акустических волн от штырей преобразователей, от краев звукопровода и т.д. Наиболее существенное влияние ...

Скачать
31231
1
6

... – это законченный элемент ИМС, который можно использовать при проектировании аналоговых микросхем. 1 Общие принципы построения топологии биполярных Имс Общего подхода к проектированию биполярных интегральных микросхем нет и быть не может, каждый тип характеризуется своими особенностями в зависимости от требований и исходных данных ИМС. Исходными данными при конструировании микросхем являются: ...

Скачать
107377
30
9

... воспринимаются даже на высоком научном уровне. Стремление упростить материал вряд ли целесообразно. Глава 3. Методические рекомендации курса «Математические основы моделирования 3D объектов» базового курса «компьютерное моделирование» для студентов педагогических ВУЗов специальности преподаватель информатики §1. Принципы построения электронного учебника Прежде чем рассмотреть ...

0 комментариев


Наверх