2. Электрофорез

Метод электрофореза таит в себе массу «подводных камней», отчего слепое копирование описанных в научной литературе примеров его использования приводит, как правило, к плачевным результатам. Поэтому попробуем разобраться в физических основах метода поглубже..

 

2.1 Введение в метод электрофореза

Представим себе два емких сосуда, соединенных между собой тонкой и длинной стеклянной трубочкой, наподобие буквы Н. Пусть сосуды и трубочка заполнены слабым раствором поваренной соли. В сосуды опустим электроды — проволочки, соединенные с клеммами источника постоянного напряжения. К примеру, пусть проволочка из правого сосуда присоединена к клемме «-», а из левого — к клемме «+». Это будут, соответственно, наши катод и анод. Включим напряжение. Миллиамперметр источника покажет, что в замкнутой цепи протекает некий ток. Он течет через солевой раствор, в частности и вдоль трубочки. Она-то нас и интересует. Вдумаемся в то, что в ней будет происходить. Никаких других растворенных веществ в трубочке нет. Электрический ток обусловлен исключительно движением двух ионов — отрицательными ионами Сl и положительными Na+. Первые движутся влево, к аноду, вторые — вправо, к катоду.

Следует ли опасаться, что запас ионов С1- и Na+ в трубочке со временем истощится? Нет. Потому что из резервуара катода в трубочку будут входить ионы Сl-, а из резервуара анода — ионы Na+, поддерживая неизменной концентрацию обоих ионов в ней. Во всяком случае так будет продолжаться до тех пор, пока не исчерпаются или хотя бы существенно изменятся запасы этих ионов в самих резервуарах. Мы до этого доводить не будем.

Зададимся теперь наивным вопросом: а что заставляет какой-нибудь конкретный ион (пусть С1-), находящийся в трубочке, двигаться влево по направлению к аноду? Ответ очевидный _ электрическое поле. А конкретнее?

Раз по трубочке течет электрический ток, значит она играет роль проводника и, следовательно, на нее подается определенное «напряжение». Ну а откуда, спросим себя, некий индивидуальный ион С1-, находящийся в середине трубки «знает», что к ее концам приложено напряжение? Но коль скоро к концам любого проводника приложено напряжение, то в этом проводнике на всей его длине немедленно образуется электрическое поле. Оно будет тем интенсивнее (сильнее), чем больше напряжение и короче трубочка. Величину интенсивности электрического поля в любой точке однородного проводника определяют как Е = V/1, где V _ напряжение, которое подается на проводник, а 1 — его длина. Эту величину именуют «напряженностью» электрического поля в данной точке проводника. Единицей напряженности, очевидно, является В/см.

Величину напряженности поля и «чувствует» любой ион, находящийся в этой точке, она заставляет его двигаться к соответствующему электроду. В однородном проводнике напряженность поля одинакова в любой точке. Подчеркнем, что напряженность поля не зависит (практически) от находящихся в трубочке в малых количествах веществ, хотя бы тоже ионов. Ее определяют основные носители тока, данном случае ионы С1- и Na+. Но сами эти «посторонние» вещества, если они тоже ионы, будут в полной мере испытывать воздействие электрического поля.

Сила, действующая на любой ион равна произведению величины его заряда на напряженность поля. В нашей трубочке она постоянна и мы могли бы ожидать на основе законов механики, что все ионы движутся равноускоренно. Этого не происходит из-за сопротивления, которое оказывает такому движению окружающая среда, в данном случае вода. В результате каждый заряженный ион будет «пробиваться», мигрировать к своему аноду довольно медленно и с постоянной скоростью, поскольку сила трения увеличивается с увеличением скорости миграции до тех пор, пока она не сравняется с силой, влекущей ион к его электроду. У разных ионов эта скорость может быть различной, поскольку сила трения зависит еще и от размера иона. Вообще, скорость миграции иона будет тем больше, чем больше его заряд и напряженность электрического поля и чем меньше размер иона. Ионы С1- и Na+ примерно одинаковой величины и потому мигрируют в разных направлениях, но с примерно одинаковой скоростью. Совсем другое дело, если бы вместо NaCI мы растворили в воде знакомый нам Трис-НСl буфер. Нам известно, что при исходной концентрации Триса =0,1 M и добавлении в его водный раствор НС1 до 0,05 М (при рН8) примерно половина молекул Tpиca превращаются в ионы Трис+ и точно такое же количество в растворе появляется ионов С1-. Ион Трис+ в 3 раза тяжелее и в несколько раз крупнее, чем ион С1-. Соответственно он будет медленнее мигрировать в электрическом поле. А следовательно, основными носителями тока в этом случае будут ионы С1- (хотя свой небольшой вклад дадут и ионы Трис+). Более того, если бы мы вообще каким-либо образом «перегородили дорогу» ионам Трис+, то весь ток переносили бы только ионы С1- (подобно электронам в металлическом проводнике). Напряженность поля установится и прочие заряженные вещества смогут двигаться в этом поле в соответствии со своими зарядами и размерами. Можно сказать, что напряженность поля определяется основными носителями заряда — они создают реальное сопротивление проводника, следовательно и величину напряжения от источника тока, которое приходится на его долю. А тем самым и напряженность поля, если длина проводника (трубочки) неизменна и он однороден.

 


Информация о работе «Полимеразная цепная реакция и электрофорез»
Раздел: Биология
Количество знаков с пробелами: 27150
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
25644
0
0

... . Тем не менее, при условии решения проблемы конкуренции за праймеры, этот способ контроля эффективности амплификации безусловно будет весьма полезен. 4. Методы, основанные на полимеразной цепной реакции 4.1 Качественный анализ Классический способ постановки ПЦР, принципы которого были изложены выше, нашел свое развитие в некоторых модификациях, направленных на преодоление ограничений ...

Скачать
37420
0
7

... геле. Поэтому приведенные ниже методики для исследования образцов ДНК с равным успехом могут использоваться и при работе с РНК. 1.2 Денатурирующий градиентный гель-электрофорез Два фрагмента ДНК, различающиеся лишь делецией, инсерцией или заменой одного нуклеотида, или единственным неспаренным нуклеотидом, можно легко разделить при помощи денатурирующего градиентного гель-электрофореза, ДГГЭ ...

Скачать
17453
0
2

... использования; - лаборант во время выделения должен быть одет в специальный халат, шапочку и очки. Все манипуляции с исследуемым материалом проводят при соблюдении правил работы с вирусами III и IV группы. Постановку ПЦР осуществляют как минимум в 3 рабочих зонах: Зона 1 (ламинарный бокс, бокс с УФ-лампой): подготовка ПЦР-реагентов. Зона 2 (ламинарный бокс, бокс с УФ-лампой): подготовка проб ...

Скачать
584410
0
0

... , вызванные динамическими му-тациями.-----------------------T-----------T-------T-----T------T------T----------------------¬ Болезнь, номер по ¦ Ген, лока-¦Триплет¦Норма¦Прему-¦Мута- ¦Литература ¦ МакКьюсику (MIM) ¦ лизация ¦ ¦ ¦тация ¦ция ¦ ¦ -----------------------+-----------+-------+-----+------+------+----------------------+ Синдром ломкой X-хро- ¦FMR1, FRAXA¦(CGG)n ...

0 комментариев


Наверх