Работа усилителя от сигналов постоянного тока

95058
знаков
15
таблиц
68
изображений

1.     Работа усилителя от сигналов постоянного тока.

В схему включить резисторы Rос1 и R7 и подобрать их так, чтобы Rос1 = R4 и R7 = R5. В качестве источников сигналов использовать два источника постоянного напряжения лабораторного стенда.

1.1. Снять зависимость , используя источники постоянных напряжений. Вначале изменять Uвх2 при Uвх1= const, затем изменять Uвх1 при Uвх2 = const.

Изменить значение Rос1 и R7: Rос1= nR4 и R7 = nR5. Подобрать значение коэффициента n по имеющимся значениям сопротивлений. Снять зависимость , используя источники постоянных напряжений.

2.     Работа усилителя от импульсных входных сигналов.

Зарисовать осциллограммы входных и выходных напряжений для разных амплитуд импульсов и времени сдвига импульсов. Примерный вид осциллограмм приведен на рис.2.

0

 

 uвых

 

 uвх1

 

0

 

0

 

0

 

а)

0

 

0

 

б)

Рис.2. Осциллограммы работы дифференциальной схемы включения:

а) ∆t > tи б) ∆t < tи; Dt – промежуток времени между фронтами импульсов

3. Оформление отчета.

По результатам опыта построить характеристики , определить Uн+ и Uн, параметры усилителя и обработать осциллограммы.


Контрольные вопросы

1.                Что такое инвертирующий (неинвертирующий) вход усилителя?

2.                В какой точке усилителя находится виртуальный ноль?

3.                Почему потенциалы инвертирующего и неинвертирующего входов при дифференциальном включении одинаковы?

4.                Что такое амплитудная характеристика усилителя?

5.                Как определить напряжение на неинвертирующем входе?

6.                Как вычислить масштабные коэффициенты по разным входам усилителя?

7.                Назвать разновидности схем дифференциального включения.

Таблица вариантов
№ вар.

Uвх1, В

Uвх2, В

R4, кОм

Rос1, кОм

R5, кОм

R7, кОм

1 0,5 1,0 0,5 1,0 2,0 3,2
2 0,7 1,2 0,8 1,5 2,7 3,6
3 1,0 1,5 1,0 2,2 3,2 4,7
4 1,2 1,7 1,2 2,4 3,6 2,0
5 1,4 2,0 1,4 2,7 4,7 2,7
6 1,6 0,5 2,0 2,5 1,0 3,2
7 1,8 0,7 2,2 3,6 1,5 3,6
8 0,2 1,0 0,5 3,2 3,2 4,7
9 0,4 1,2 0,8 2,5 3,6 2,0
10 0,6 1,4 1,2 2,4 1,0 2,7
11 0,8 1,6 1,6 3,0 1,4 3,6
12 1,0 1,8 1,4 2,0 1,6 4,7
13 1,2 2,0 1,2 2,7 2,0 5,2
14 1,4 0,2 0,5 1,2 2,2 4,7
15 1,6 0,4 0,8 1,4 2,5 3,6
16 1,8 0,6 1,0 2,2 3,0 2,0
17 2,0 0,8 1,2 3,6 3,6 3,2
18 0,4 1,0 0,5 3,0 1,0 3,6
19 0,6 1,2 0,8 3,2 1,6 4,7
20 0,8 1,4 1,2 2,0 2,0 5,1
21 1,0 0,2 1,4 2,4 2,2 2,0
22 1,2 0,4 1,6 3,6 2,5 2,7
23 1,4 0,6 2,0 4,7 3,0 3,2
24 1,6 0,8 2,2 4,2 3,6 4,7

Примечание: студенты, получившие подвариант А – строят амплитудную характеристику Uвых = F (Uвх2) для Uвх1 = const, Uвх2 = var; подвариант Б – строят амплитудную характеристику Uвых = F (Uвх1) для Uвх1 = var, Uвх2 = const; подвариант В – временные диаграммы Uвх1(t), Uвх2(t), Uвых(t).

Значения Uвх1 = const, Uвх2 = const берутся из таблицы вариантов. При построении временных диаграмм считать, что Uвх1 и Uвх2 являются постоянными напряжениями. Напряжение насыщения усилителя Uн± = 7В.


Работа №6

Исследование суммирующего усилителя

Цель работы

Изучение схемы суммирующего усилителя на основе операционного усилителя.

Теоретическая часть

Для суммирующего усилителя используется инвертирующее включение операционного усилителя. В этой схеме действует параллельная отрицательная обратная связь по напряжению (рис.1). Сопротивление обратной связи Rос соединяет точки 6 и 2.

Схема усилителя приведена на рис.1.

Рис.1. Схема суммирующего усилителя

Пусть на инвертирующий вход поступают два сигнала Uвх1 и Uвх2, которые подключаются к точке 2 через резисторы R2 и R4. Операционный усилитель является идеальным усилителем напряжения, поэтому для него iвхи≈0, где iвхи – входной ток инвертирующего входа. Тогда точка 2 является виртуальным нулем и справедливо уравнение

i1 + i2 = iос. (1)

Значения токов определяются из соотношений:

i1 = ; i2 = ; iос = . (2)

Выражения (2) подставляются в выражение (1):

 +  = – , Uвых = – (Uвх1 + Uвх2), (3)

где ,  называются масштабными коэффициентами. Знак минус говорит об инверсии результата суммирования.

Масштабные коэффициенты применяются для того, чтобы усилитель работал на линейном участке амплитудной характеристики. Если необходимо ослабить значения Uвх1 и Uвх2, то < 1 и < 1. Если сумма наибольших значений Uвх1 и Uвх2 не превышает значения напряжения насыщения, то масштабные коэффициенты равны единице, а выражение (3) принимает вид:

Uвых = – (Uвх1 + Uвх2). (4)

Экспериментальная часть

1.                Снятие амплитудной характеристики усилителя.

Снять амплитудные характеристики усилителя: Uвых = F(Uвх1) при Uвх2 = const и Uвых = F(Uвх2) при Uвх1 = const. Источники постоянных напряжений находятся на лабораторном стенде. При снятии характеристики установить заданное значение сопротивления обратной связи Rос.


Информация о работе «Исследование полупроводниковых приборов»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 95058
Количество таблиц: 15
Количество изображений: 68

Похожие работы

Скачать
153271
6
6

... от структуры силикатных стёкол, и способно выдерживать умеренные концентрации катионов (например, натрий до 0,1%), не увеличивая электропроводимость. Боратное стекло отвечает требованиям герметизации полупроводниковых приборов: свободно от щелочных металлов, уплотняется (спаивается) при температуре до 800С, относительно инертно и водонепроницаемо, имеет регулируемые коэффициенты температурного ...

Скачать
21910
0
1

... интегральным микросхемам. Они позволяют выполнять логическую обработку большого числа сигналов, воспроизводить сложные функции усиления, генерации и преобразования электрических сигналов. Тиристор – электропреобразовательный полупроводниковый прибор, содержащий три или более р-п-перехода. По числу внешних электродов тиристоры делятся на: двухэлектродные – динисторы и трехэлектродные – тринисторы. ...

Скачать
50268
3
3

... ). Перспективы развития микроэлектроники Функциональная микроэлектроника. Оптоэлектроника, акустоэлектроника, магнетоэлектроника, биоэлектроника и др. Содержание лекций 1 Цели и задачи курса “Электронные, квантовые приборы и микроэлектроника”. Физика полупроводников. p-n- переходы. Полупроводниковые диоды. Разновидности и характеристики. 2 Транзисторы. Принцип действия, разновидности и ...

Скачать
43308
1
12

... измениться в е раз из-за рекомбинации. Для диода с тонкой базой при низкой частоте постоянная времени равна (1.6) 2. РАСЧЕТ и исследование мощных низкочастотных диодов на основе кремния   2.1 Расчет параметров диода Проведем расчет и исследования статических и динамических характеристик 4H-SiC p+-п0-n+ диодов, рассчитанных на обратное напряжение 6, 10 и 20 кВ и ...

0 комментариев


Наверх