1.4 Компактные множества

 

Определение: Множество  в метрическом пространстве  называется компактным, если из всякой бесконечной последовательности  можно выделить подпоследовательность, сходящуюся к некоторому пределу .

Определение: Множество , лежащее в некотором метрическом пространстве , называется предкомпактным, или относительно компактным (компактным относительно), если его замыкание в  компактно.

Определение: Множество  называется ограниченным, если оно содержится в некотором шаре с центром в точке , то есть существует такая постоянная , такая, что для любого  выполняется неравенство

В курсе теории метрических пространств доказывалось, что любое компактное множество является ограниченным. Докажем, что любое относительно компактное множество также является ограниченным.

Теорема: Множество , лежащее в некотором метрическом пространстве , и относительно компактное, является ограниченным.

Доказательство. Замыкание множества М является компактным, следовательно, ограниченным. Но , а подмножество ограниченного множества также ограничено.

В конечномерном пространстве  выполняется также обратное утверждение.

Теорема: В конечномерном пространстве  всякое ограниченное подмножество относительно компактно.

Эта теорема следует из теоремы Больцано-Вейерштрасса для пространства : в этом пространстве всякая ограниченная последовательность содержит сходящуюся подпоследовательность.

Можно доказать также более общую теорему.

Теорема: В конечномерном нормированном пространстве всякое ограниченное подмножество относительно компактно.

Доказательство:

Пусть  – ограниченное подмножество n–мерного пространства , т. е. существует такая константа , что  для всех . Каждому  сопоставляем вектор , координаты которого  равны соответствующим координатам в разложении элемента  по некоторому фиксированному базису. Тогда справедливо следующее неравенство:  (1), где – наименьшее значение  на единичном шаре , . Возьмем любую последовательность . По неравенству (1) соответствующие этим элементам векторы  образуют ограниченное множество, а в  ограниченные множества относительно компактны, следовательно, из последовательности , можно выделить частичную , сходящуюся к некоторому пределу.

Сходимость в  есть сходимость по координатам, следовательно, и последовательность  сходится по координатам. Но тогда эта последовательность сходится к некоторому пределу и по норме (в силу непрерывности суммы и произведения в нормированных пространствах). Тем самым относительная компактность  доказана.

Определение: Семейство  функций называется равностепенно непрерывным, если для любого  найдется такое , что , для любой функции , для любых , таких, что .

Определение: Семейство  функций , определенных на некотором отрезке, называется равномерно ограниченным, если существует такое число , что , для любого

Теорема Арцела: Для того чтобы семейство  непрерывных функций, определенных на отрезке , было предкомпактно в , необходимо и достаточно, чтобы это семейство было равномерно ограничено и равностепенно непрерывно.

Теорема: Образом компактного множества при непрерывном отображении является компактное множество.

Докажем аналогичную теорему для относительно компактных множеств.

Теорема: Образом относительно компактного множества при непрерывном отображении является относительно компактное множество.

Доказательство. Пусть  – непрерывное отображение,  – относительно компактное множество. Рассмотрим последовательность точек из множества : , . Так как множество  относительно компактно, то существует подпоследовательность . Так как отображение  – непрерывное, то . Значит, для множества  выполнено условие относительной компактности.

Примеры компактных и некомпактных множеств

1.         В пространстве  всякий отрезок  будет компактен. (Так как пространство конечномерно, а данный отрезок является замкнутым и ограниченным множеством).

2.         В пространстве  шар с центром в  и радиусом , то есть множество точек , таких, что , является компактным. (Аналогично по доказанной теореме).

3.         В пространстве  множество  будет компактным, поскольку какую бы мы ни взяли бесконечную последовательность его элементов, из неё всегда можно будет выделить подпоследовательность, состоящую из одного элемента множества, которая, очевидно, будет сходящейся к этому элементу множества (определение).

4.         В пространстве рассмотрим множество элементов , , … (у последовательности  единица стоит на –м месте, а на остальных местах нули). Оно ограничено и замкнуто, но никакая подпоследовательность последовательности  не фундаментальна и, значит, не сходится, поскольку  при . Множество некомпактно.


Информация о работе «Компактные операторы»
Раздел: Математика
Количество знаков с пробелами: 19857
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
36187
0
5

... состоит из значений функции g(x) на отрезке [a,b]. Причём этот оператор имеет лишь непрерывный спектр, так как резольвента при  существует, но не непрерывна. Точечного спектра оператор не имеет. Пример 3: Рассмотрим оператор дифференцирования на множестве дифференцируемых функций. А: (для краткости будем писать вместо f(x) просто f). Рассмотрим резольвенту этого оператора: , то есть мы должны ...

Скачать
48279
5
0

... : µ§. Шары такие : µ§ и µ§, причем: µ§ , µ§. µ§ µ§ Если µ§ ,то: µ§ , µ§ µ§ µ§ µ§ µ§ Теорема доказана. Единственность классического решения задачи Дирихле для уравнения Пуассона. µ§ µ§ (1) µ§ µ§ (2) µ§ - это не гарантирует существование решения. µ§ Теорема. Задача (1) (2) может иметь не более одного ...

Скачать
65703
0
0

... ;0,0(p2) = P0,0. В силу теоремы 2.8. главы I разложения I, Р1 и Р2 также определяются однозначно. § 2. Два ортопроектора в сепарабельном гильбертовом пространстве 2.1. Неприводимые *-представления *-алгебры P2 . Пусть А = Р1 - Р1┴ = 2Р1 – I и В = Р2 – Р2┴ = 2Р2 – I. Тогда А2 = I , В2 = I. Следовательно А и В самосопряженные унитарные операторы в Н. Положим U=АВ, тогда U-1=ВА и А-1UА = ...

Скачать
69018
1
0

... ;0,0(p2) = P0,0. В силу теоремы 2.8. главы I разложения I, Р1 и Р2 также определяются однозначно. § 2. Два ортопроектора в сепарабельном гильбертовом пространстве 2.1. Неприводимые *-представления *-алгебры P2 . Пусть А = Р1 - Р1┴ = 2Р1 – I и В = Р2 – Р2┴ = 2Р2 – I. Тогда А2 = I , В2 = I. Следовательно А и В самосопряженные унитарные операторы в Н. Положим U=АВ, тогда U-1=ВА и А-1UА ...

0 комментариев


Наверх