2. Решить линейное уравнение 1-го порядка

Ищем решение уравнения в виде произведения двух функций:

При этом:


После подстановки в исходное уравнение имеем:

Чтобы коэффициент при u обратился в 0, в качестве v выбираем функцию удовлетворяющую уравнению:

Найдем функцию u, которая должна удовлетворять уравнению:

:

Решение запишется в виде:


3

Это неоднородное линейное дифференциальное уравнение второго порядка. Его решение ищем в виде:

, где  - общее решение соответствующего однородного уравнения,  - частное решение.

Найдем

Решим однородное дифференциальное уравнение

Характеристическое уравнение для него:

Это квадратное уравнение

d=36-100=-64 – дискриминант отрицательный, корни комплексные:

k1=3-4i ; k2=3+4i

Общее решение, следовательно, имеет вид:

,

где  - константы.

Ищем частное решение. Функция свободного члена имеет вид:


, где a=2,b=3,k=1,p=-6,q=25

При этом , следовательно, частное решение ищем в виде:

Находим его производные первого и второго порядка и подставляем в уравнение:

Для нахождения коэффициентов А и В решим систему:

A=0,07, B=0,16

Таким образом, окончательное решение уравнения имеет вид:


IV. Ряды

1.         Исследовать на сходимость ряд с положительными членами

 

Рассмотрим ряд:

Это степенной ряд с основанием меньшим 1, а он заведомо сходится.

Теперь сравним члены ряда  с членами ряда

 при n>4 , значит ряд  также сходится.

2.         Исследовать на абсолютную и условную сходимость ряд:

Исследуем на абсолютную сходимость (сходимость ряда, состоящего из модулей членов знакопеременного ряда) значит необходимый признак сходимости выполняется.

,


Сравним член этого ряда с членом заведомо расходящегося гармонического ряда:

, следовательно наш ряд расходится абсолютно.

Исследуем ряд на условную сходимость:

Так как условия признака Лейбница выполнены

 

данный ряд сходится условно.

3. Найти область сходимости функционального ряда

, перепишем его в виде:

Член данного ряда представляет собой член степенного ряда, помноженный на член гармонического ряда.

Для расходящегося гармонического ряда выполняется однако основной признак сходимости (его член стремится к нулю), так что сходимость функционального ряда  определяется сходимостью степенного ряда: , причем при любом x это будет знакопостоянный ряд.

Cтепенной же ряд сходится когда его член по модулю <1:


Решаем это модульное неравенство и находим область сходимости функционального ряда :

Итак, область сходимости функционального ряда :


Информация о работе «Интегралы. Функции переменных»
Раздел: Математика
Количество знаков с пробелами: 3763
Количество таблиц: 0
Количество изображений: 6

Похожие работы

Скачать
40147
0
0

... , которые содержат неизвестную функцию, её производные и аргументы. Обыкновенным называется дифференциальное уравнение, в котором неизвестная функция является функцией одной переменной. Если неизвестная функция является функцией многих переменных, то соответствующее уравнение называется дифференциальным уравнением в частных производных. Порядком дифференциального уравнения называется наивысший ...

Скачать
24131
0
1

... зависимость от параметра. Рассматривая интеграл Коши, мы видим, что подынтегральная функция зависит от двух комплексных переменных: переменной интегрирования и фиксированного значения переменной . Тем самым интеграл Коши является интегралом, зависящим от параметра. Естественно поставить вопрос об общих свойствах интегралов по комплексной переменной, зависящих от параметра. Пусть задана функция ...

Скачать
20222
1
2

... переменных Z и z при произвольном изменении области G и переменных на кривой С. Очевидно, что при сделанных предположениях : Интеграл существует и является функцией комплексной переменной. Справедлива формула : (2) Эта формула устанавливает возможность вычисления производной от исходного интеграла путем дифференцирования подинтегральной функции по параметру. ТЕОРЕМА. Пусть f(Z) ...

Скачать
22586
1
1

... его тождество. Общим решением дифференциального уравнения го порядка называется такое его решение , которое является функцией переменных и  произвольных независимых постоянных . Частным решением дифференциального уравнения называется решение, получаемое из общего решения при некоторых конкретных числовых значениях постоянных . Теорема. Пусть в дифференциальном уравнении  (1) функция ...

0 комментариев


Наверх