2. Допоміжні перетворення

Зазначимо перш за все, що достатньо обмежитися випадком многочлена 4-ї степені під коренем, так як до нього легко приводиться випадок, коли під коренем многочлен 3-ї степені.

Розглянемо, взагалі, алгебраїчне рівняння непарної степені (з дійсними коефіцієнтами)

.

При достатньо великих по абсолютній величині значеннях x многочлен має знак старшого члена, тобто при додатному x – знак , а при від’ємному x – обернений знак. Так, як многочлен це неперервна функція, то, міняючи знак, він в проміжній точці необхідно перетворюється в 0. Звідси: всяке алгебраїчне рівняння непарної степені (з дійсними коефіцієнтами) має принаймні один дійсний корінь.

Дійсно, многочлен 3-ї степені  з дійсними коефіцієнтами необхідно має дійсний корінь, скажемо λ, і, відповідно, допускає дійсне розкладання

Підстановка ( або ) і здійснює потрібне приведення

В першу чергу ми будемо розглядати лише диференціали, що мають корінь із многочленів 4-ї степені.

По відомій теоремі алгебри, многочлен четвертої степені з дійсними коефіцієнтами може бути представленим у виді добутку двох квадратних трьохчленів з дійсними коефіцієнтами:

 (5)

Постараємось тепер необхідною підстановкою знищити в обох трьохчленах відразу члени першої степені.

Якщо р = р’, то наша ціль досягається простою підстановкою . Нехай тепер ; в цьому випадку ми скористаємось дробно-лінійною підстановкою


Можливість встановити дійсні і при чому різні значення для коефіцієнтів μ і ν зумовлена нерівністю

  (6)

Нехай же тепер трьохчлени (5) обидва мають дійсні корені, скажемо, перший – корені α і β, а другий корені γ і δ. Підставляючи

 

можна переписати (6) у вигляді

 (6´)

а для здійснення цієї нерівності достатньо лише потурбуватися, щоб корені трьохчленів не перемежались (наприклад, щоб було α > β > γ > δ ), що в наших можливостях.

Таким чином, належно вибравши μ і ν, за допомогою вказаної підстановки ми отримаємо

що можна також (якщо виключити випадки, коли який-небудь з коефіцієнтів M, N, M’, N’ виявляються нулем) переписати у виді


при А, m і m’ відмінних від нуля.

Цей інтеграл можна звести, з точністю до інтеграла від раціональної функції, до такого

Розкладемо тепер раціональну функцію R*(t) на два доданки

Перший доданок не міняє свого значення при заміні t на –t, значить, зводиться до раціональної функції від : ; другий же при вказаній заміні міняє знак, і тому має вид Розглянутий інтеграл представиться в формі суми інтегралів

Але другий із них підстановкою відразу зводиться до елементарного інтегралу


і береться в кінцевому виді. Таким чином, подальшому дослідженню підлягає тільки інтеграл

 (7)


Информация о работе «Еліптичні інтеграли»
Раздел: Математика
Количество знаков с пробелами: 17682
Количество таблиц: 5
Количество изображений: 6

Похожие работы

Скачать
14611
0
7

... . Тоді, якщо існує скінченна границя  (13), її називають невласним інтегралом першого роду і позначають так:  (14) Таким чином, за означенням  (15) У цьому випадку інтеграл (14) називають збіжним, а підінтегральну функцію f(x) – інтегрованою на проміжку (а;+). Якщо ж границя (13) не існує або нескінченна, то інтеграл (14) називають також невласним але розбіжним, а функція f(x) – ...

Скачать
25792
0
3

... на малому , g(x,y) стала y1 = y(x0 ) + y(x0 ) + g(x0, y0 ) x Повторюючи знайдемо y2 = y(x1+x)  y(x1) + g(x1, y1 ) x yn= yn-1+ g(xn-1 ,yn-1) x, (n=0,1,2…) нахил дотичної визначається початковою точкою інтервалу. 2.3. Програма для комп’ютера.   Алгоритм методу. 1. Вибирається початкова умова, величина кроку і кількість ітерацій (кроків). 2. Визначається y і нахил у початковій точці ...

Скачать
105144
2
4

... метод координат. V. Аксіома паралельності Сама остання аксіома грає в геометрії особливу роль, визначаючи поділ геометрії на дві логічно несуперечливі й взаємно виключають один одного системи: Евклідову й неевклідову геометрії. У геометрії Евкліда ця аксіома формулюється так. V. Нехай а – довільна пряма й А – крапка, що лежить поза прямій а, тоді в площині α, обумовленою крапкою А и ...

Скачать
91515
1
26

... для систем, частинок з антисиметричними хвильовими функціями, тобто до ферміонів. 2.2.3. Розподіл електронів за станами. Періодична система елементів. Сукупність електронів, які перебувають у всіх можливих станах з однаковим значенням головного квантового числа n, утворює електронну оболонку (електронний шар). Енергетичні шари прийнято позначати великими латинськими літерами відповідно до ...

0 комментариев


Наверх