3. СОВРЕМЕННОЕ ОБОРУДОВАНИЕ

 

Атомно-абсорбционные и эмиссионные спектрометры

Атомно-абсорбционный спектральный анализ основан на селективном поглощении УФ - или видимого излучения атомами газа.

Для перевода пробы в газообразное атомарное состояние применяются два вида устройств атомизации - пламенные и электротермические.

В качестве источника излучения обычно применяют лампу с полым катодом из определяемого металла. Интервал длин волн спектральной линии, испускаемой источником сета, и линии поглощения того же самого элемента в пламени очень узок, поэтому поглощение других элементов практически не сказывается на результатах анализа.

Атомно-абсорбционные элементные анализаторы относятся к современным селективным, высокопроизводительным и точным приборам, которые позволяют анализировать до 70 элементов в пробе с чувствительностью в интервале 10-4-10-9 % масс. Недостатками этого вида анализа являются необходимость использования горючих газов, невозможность одновременного определения в пробе нескольких элементов.

В настоящее время известно несколько модификаций средств измерений, основанных на принципе атомной абсорбции, выпускаемых отечественными фирмами: - «Спектр - 5М»: ширина спектрального диапазона прибора - от 190 до 800 нм, время одного измерения - 1 мин, «КВАНТ - АФА», «КВАНТ - Z. ЭТА», «МГА - 915».

В настоящее время метод атомной абсорбции считается одним из самых селективных, производительных, экспрессных, точных и одновременно сравнительно дешевых (7 - 15 тыс. $).

Вариантом атомной спектроскопии является атомно-эмиссионная спектроскопия, отличающаяся от атомно-абсорбционной обратным способом регистрации - по оптическому спектру испускания возбужденных атомов.

В этом варианте атомизатор и источник возбуждения совпадают, что несколько упрощает конструкцию. Наиболее перспективным считается вариант с индуктивно связанной плазмой (ИСП), не уступающей по чувствительности атомно-абсорбционным атомизаторам, но имеющий в 10 - 100 раз более широкий диапазон определяемых содержаний. При этом атомно-эмиссионные анализаторы позволяют одновременно определять в пробе несколько элементов, но к сожалению, уступают атомно-абсорбционным спектрометрам по воспроизводимости и по селективности.

Среди имеющихся на рынке наиболее известны приборы серии «ЭРИДАН-500». Будучи основанными на ИСП, эти эмиссионные спектрометры позволяют проводить элементный анализ практически любых веществ, в том числе чистых металлов и примесей в них, сплавов и сталей, порошковых (в том числе почв) и жидких проб (в том числе после поглощения из воздуха), продуктов питания, медицинских проб с высокой точностью (1- 20 %). Пределы обнаружения Cr, Al, Hg, As, Ni, Pb составляют 1 - 20 мкг/л. Стоимость данной модификации составляет 22 000 $.

Атомно-абсорбционный анализ (ААА) является одним из наиболее распространенных методов аналитической химии. Предварительная подготовка анализируемой пробы аналогична этой операции в пламенной фотометрии: перевод пробы в раствор, распыление и подача аэрозолей в пламя. Растворитель испаряется, соли разлагаются, а металлы переходят в парообразное состояние, при котором они способны поглощать излучение той длины волны, которую могли бы сами излучать при более высоких температурах. Луч света от лампы полого катода, излучающий дуговой спектр определяемого элемента, направляется через пламя на щель спектрометра, с помощью которого выделяется аналитическая спектральная линия и измеряется степень поглощения ее интенсивности парами определяемого элемента.

 

AAnalyst 200, 400

Атомно-абсорбционные спектрометры AAnalyst 200 и 400 устанавливают новые стандарты в области анализа элементного состава материалов. Это первые серийные приборы с реальной двухлучевой Эшеле - оптической системой. AAnalyst 200, имеющий встроенную систему управления с графическим интерфейсом и сенсорным экраном, кардинальным образом меняет представления о методе атомной абсорбции с пламенной атомизацией. Никогда ранее этот метод не был столь прост и не обладал такими возможностями! AAnalyst 400 - атомно-абсорбционный спектрометр, дающий полную автоматизацию пламенного и печного вариантов АА при безупречных параметрах по доступной цене.

 

Спектрометр «МГА-915»

МГА-915

Атомно-абсорбционный спектрометр с электротермической атомизацией и Зеемановской коррекцией неселективного поглощения «МГА-915» предназначен для измерения содержания элементов (Ag, Al, As, Au, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Pd, Pt, Rh, Ru, Se, Sn, Sb, Sr, Ti, V, Zn и др.) в широком круге объектов: различных типах вод (питьевые, природные, сточные, морские), атмосферном воздухе, почвах, донных отложениях и осадках сточных вод, пищевых продуктах и сырье (в том числе в напитках), биологических тканях и жидкостях (кровь, моча), продуктах нефтехимического производства, а также металлах и сплавах и иных объектах. Наибольшей эффективностью данный прибор обладает при анализе проб со сложным матричным составом: морские воды, кровь, моча.

Спектрометр может комплектоваться автосемплером, ртутно-гидридой приставкой. В качестве источников света используются лампы с полым катодом, а также высокоинтенсивные безэлектродные разрядные лампы собственного производства.

Спектрометр «МГА-915» обладает следующими характеристиками:

Универсальность и селективность. Высокая селективность связана с использованием высокоэффективного варианта селективного атомно-абсорбционного анализа – Зеемановской модуляционной поляризационной спектрометрии. Анализатор «МГА-915», благодаря своей высокой селективности, позволяет определять содержание широкого круга элементов в пробах самого разного состава – без или с минимальной пробоподготовкой. ААС с ЭТА и зеемановским корректором неселективного поглощения во всем мире признан в качестве «референтного метода» при определении малых содержаний элементах в пробах сложного состава.

Высокая чувствительность. Пределы обнаружения элементов на уровне лучших атомно-абсорбционных спектрометров, предлагаемых на рынке аналитического оборудования.

Автоматизация измерений. «МГА-915» является полным автоматом с автоматической сменой источников излучения и установкой соответствующих резонансных линий, присутствует турель на 6 ламп (компьютерная перестройка с одного элемента на другой без необходимости ручной регулировки.

Области применения

Применяется в экологии, геологоразведке, контроле технологических процессов, производственной санитарии, научных исследованиях.

Экологический контроль:

·           измерение содержания различных элементов в воде, почве, донных отложениях, атмосферном воздухе, а также тканях растительного и животного происхождения.


Технологический контроль:

·           экспресс-анализ и непрерывный контроль состава веществ в технологических процессах;

входной контроль, контроль готовой продукции

Медицина:

·           анализ тканей и жидкостей биологического происхождения (кровь, моча, волосы и др.)

Криминалистика:

·           идентификация примесей и следовых количеств элементов.

Ветеринарные лаборатории:

·           корма, кровь, продукты животноводства.

Контролирующие и сертифицирующие лаборатории: анализ пищевых продуктов и кормов, анализ сточных, природных, питьевых вод.

Атомно-абсорбционный спектрофотометр "Спираль-17"

Спектрофотометр СПИРАЛЬ-17 предназначен для определения концентрации токсичных металлов в питьевой, природных и сточных водах, пищевых продуктах, почве, воздухе, растениях и других объектах.

Новая модель спектрофотометра с вольфрамовым спиральным атомизатором отличается от первого серийного прибора СПИРАЛЬ-14, нашедшего применение в более чем 80 лабораториях Госсанэпиднадзора, водоканалов, охраны окружающей среды, промышленных предприятий и институтов, улучшенными аналитическими и эксплуатационными характеристиками, повышенной надежностью в работе.

Спектрофотометр СПИРАЛЬ-17 внесен в Госреестр средств измерений, имеет сертификат и допущен к применению в Российской Федерации.

Основные преимущества спектрофотометра СПИРАЛЬ-17:

·           спиральный вольфрамовый атомизатор, имеющий чувствительность на уровне графитового, длительный срок службы, малое энергопотребление и отсутствие водяного охлаждения;

·           полная автоматизация процесса анализа, обработка результатов измерений и управление работой прибора от ПЭВМ типа IBM PC;

·           отсутствие горючих газов, большая в 100-1000 раз чувствительность определения большинства элементов в сравнении с пламенными атомно-абсорбционными спектрофотометрами;

·           возможность определения широкого круга элементов на уровне предельно допустимых концентраций (ПДК) и ниже;

·           меньшая стоимость прибора в сравнении с отечественными и зарубежными аналогами.

По заявкам потребителей разрабатываются с аттестацией в Госстандарте, методики анализа других, интересующих заказчиков объектов.

Изготовитель обеспечивает проведение пуско-наладочных работ, гарантийное и сервисное обслуживание, обучение и консультации, поставку расходуемых материалов.

Основные параметры и характеристики спектрофотометра

Спектральный диапазон, нм от 200 до 600
Диапазон измерения оптической плотности, Б 0-1,5
Корректор неселективного поглощения дейтериевый
Объем отбираемой пробы, мкл 6
Время измерительного цикла, с 60-90
Расход защитного газа (аргон), л/мин 0,5-1
Среднее число рабочих циклов атомизатора, шт. 1500
Потребляемая мощность, В*А не более 300
Масса, кг не более 50
Габаритные размеры, мм, не более: 680*350*610

Для более эффективного использования прибора разработаны, аттестованы в Госстандарте и поставляются потребителям методики определения:

·           Ag, AI, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn в питьевой и природной воде;

·           AI, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sn, Zn в сточных водах;

·           AI, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn в воздухе рабочей зоны и промвыбросах;

·           Аu в горных породах;

·           Cd, Cu, Pb, Zn в зерне, муке и хлебобулочных изделиях;

·           Cd, Cu, Fe, Pb, Zn в пищевом спирте, водке и вине. [24]

Пределы обнаружения и ПДК в питьевой воде для некоторых элементов (в мг/л)

Элемент

Предел обнаружения

ПДК

Элемент

Предел обнаружения

ПДК

Аg 0,0001 0,05 Cu 0,0001 1,0
Al 0,0003 0,5 Fe 0,0004 0,3
Bi 0,001 0,1 Mn 0,00005 0,1
Cd 0,00001 0,001 Ni 0,0005 0,1
Co 0,0005 0,1 Pb 0,0002 0,03
Cr 0,0005 0,05 Zn 0,0003 5,0

Литература

 

1.         Основы аналитической химии / Под ред. Ю.А. Золотова. В 2-х т. М.: Высш. шк., 2000.

2.         Основы аналитической химии. Практическое руководство / Под ред. Ю.А. Золотова. М.: Высш. шк., 2001.

3.         Кунце У., Шведт Г. Основы качественного и количественного анализа / Пер. с нем. М.: Мир, 1997.

4.         Пилипенко А.Т., Пятницкий И.В. Аналитическая химия. В 2-х т. М.: Химия, 1990.

5.         Юинг Г. Инструментальные методы химического анализа / Пер. с англ. М.: Мир, 1989.

6.         Дерффель К. Статистика в аналитической химии / Пер. с нем. М.: Мир, 1994.

7.         Кузьмин Н.М., Золотов Ю.А. Концентрирование следов элементов. М.: Наука, 1988.

8.         Горелик Д.О., Конопелько Л.А., Панков Э.Д. Экологический мониторинг. В 2 т. СПб.: Крисмас

9.         Моисеев Н.Н., Восхождение к разуму. М., «ИЗДАТ», 1993.

10.       Венецкий С.И., Рассказы о металлах. М., «Металлургия», 1970.

11.       Эйхлер В., Яды в нашей пище. М., «Мир», 1993.

12.       Рюдт С, Химия биологически активных природных соединений, М., «Мир», 1978.

13.       Штефен Д., Антропогенное загрязнение и здоровье, М., «Мир», 1976. Ревелль П., Ревелль Ч., Среда нашего обитания, книга четвертая, М., «Мир», 1995.

14.       Барковский Е.В., Введение в химию биогенных элементов и химический анализ, Минск, «Вышейшая школа», 1997.

15.       Назаренко В.Т., Руководство к экологизированному курсу химии, М., «Просвещение», 1995.

16.       Николаев Л.А., Химия жизни, М., «Просвещение», 1973.

17.       Кукушкин Ю.Н., Химия вокруг нас, М., «Высшая школа», 1992.

18.       И.Ю. Пархоменко, В.Л. Таусон, В.И. Меньшиков Термическая атомно-абсорбционная спектроскопия как метод диагностики форм нахождения тяжелых металлов в объектах окружающей среды и минералах

19.       Баженова Л.Н., Жернакова З.М., Сулейманова Н.А. Спектрометрические характеристики растворов гумуса. Исследование их комплексообразования с металлами

20.       Егорова Л.С., Темерев С.В., Петров Б.И. Определение форм тяжелых металлов в снежном покрове после экстракции тиопирином.

21.       С.С.Шацкая, Н.Ф.Глазырина, И.А. Деревягина Изучение поведения токсичных элементов в природных средах методом атомной абсорбции.

22.       Рафалюк В.В., Туровская Е.Н., Алемасова А.С. Квантовохимическое моделирование и исследование пиролиза серосодержащих хелатов меди, кадмия свинца атомно-абсорбционным методом.

23.       Т.И. Утенкова Разработка методического обеспечения атомного оптического спектрального анализа почв и биологических материалов для экологической экспертизы на токсичные металлы

24. http://www.zhdanov.ru/


Информация о работе «Атомно-адсорбционный спектрохимический анализ тяжелых металлов в почве»
Раздел: Экология
Количество знаков с пробелами: 43047
Количество таблиц: 8
Количество изображений: 2

Похожие работы

Скачать
49078
0
2

... и кондуктометрия. Наиболее эффективными вольтамперометрическими методами являются дифференциальная импульсная полярография (ДИП) и инверсионный электрохимический анализ (ИЭА). Сочетание этих двух методов позволяет проводить определение с очень высокой чувствительностью - приблизительно 10-9 моль/л, аппаратурное оформление при этом несложно, что дает возможность делать анализы в полевых условиях. ...

0 комментариев


Наверх