4.    Выражение арксинуса через арккосинус.

Пусть , если , то . Дуга имеет косинус, равный , а поэтому

При это равенство выполняться не может. В самом деле, в этом случае

, а для функции имеем:

так как аргумент арккосинуса есть арифметический корень , т.е. число неотрицательное.

Расположение рассматриваемых дуг пояснено на рисунке:


Х>0 X<0

При отрицательных значениях Х имеем Х<0, а при положительных X>0, и

Таким образом, имеем окончательно:

если , (4)

, если


График функции

-1

 

1

 

Область определения есть сегмент [-1;1]; согласно равенству (4), закон соответствия можно выразить следующим образом:


, если

, если

5.    Аналогично установим, что при имеем:

, если же , то

Таким образом:

, если (5)

, если


Информация о работе «Аркфункции»
Раздел: Математика
Количество знаков с пробелами: 15614
Количество таблиц: 10
Количество изображений: 8

Похожие работы

Скачать
14785
2
19

... по абсолютной величине единицы, поэтому данная функция определена для всех значений х. Преобразуем первое слагаемое по формуле (4). Приняв во внимание равенство получим: Выполнение обратных тригонометрических операций над тригонометрическими функциями. При преобразовании выражений вида следует принимать во внимание в какой четверти находится аргумент х и в каком промежутке находится значение ...

Скачать
34332
5
12

... . Частные случаи тригонометрических уравнений   Определение. Уравнения вада sin x = a; cos x = a; tg x = a; ctg x = a, где x - переменная, aR, называются простейшими тригонометрическими уравнениями.   Тригонометрические уравнения   Аксиомы стереометрии и следствия из них Основные фигуры в пространстве: точки, прямые и плоскости. Основные свойства точек, прямых ...

0 комментариев


Наверх