2.1 Причини виникнення короткого замикання (КЗ). Термічна та електродинамічна дія КЗ. Профілактика КЗ.


КЗ виникають в результаті порушення ізоляції частин обладнання, що проводять струм, і зовнішніх механічних пошкоджень в електричних дротах, обмотках двигунів і апаратів. Ізоляція елементів, що проводять струм, може пошкоджуватися при дії на неї високої температури або полум’я, інфрачервоного випромінювання, переходу напруги з первинної обмотки на вторинну, при відсутності волого- і пилезахисту обладнання, при підвищених режимах навантаження (нагрів до високих температур, і як наслідок, при охолоджені конденсується вода) та ін.

Сила струму КЗ може бути від одиниць до сотень кілоампер і залежить від таких факторів: потужності джерела живлення (прямо пропорційно); повного опору елементів кола, включених між джерелом живлення і точкою КЗ; виду короткого замикання (трифазне, однофазне), при однофазних КЗ сила струму мінімальна; часу з моменту виникнення КЗ до відключення КЗ апаратами захисту. Якщо апарати захисту швидкодіючі і особливо струмообмежуючі, тоді КЗ не встигає досягнути максимального значення.

Струми КЗ викликають термічну та електродинамічну дію і супроводжуються різким зниженням напруги в електромережі. Струми КЗ можуть перегріти частини, що проводять струм, і розплавити дроти (температура до 200000 С). Протікання по провіднику тривалого допустимого струму силою (І) пов’язане з виділенням тепла Q (Дж) і кількісно визначається законом Ленца-Джоуля:



де І – сила тривалого допустимого струму, А;

R – активний опір, Ом;

 - час, с.

Час проходження струму КЗ не перевищує декількох секунд або навіть долі секунди і залежить від апаратів захисту (плавких запобіжників, автоматичних вимикачів тощо). При проходженні струму КЗ, сила якого перевищує допустимий струм, температура нагріву дроту різко підвищується і може досягнути небезпечних значень (не враховується відвід тепла в навколишнє середовище, оскільки час проходження струму малий, а все виділене в провіднику тепло йде на його нагрівання).

Два провідники, по яких проходить електричний струм, взаємодіють один з одним. Напрям сили взаємодії визначається напрямом струмом в провідниках. При однаковому напрямі струму електродинамічні сили притягують провідники, при різних – відштовхують. При КЗ в мережі можуть виникати струми, що в десятки і сотні разів перевищують номінальні, тому електродинамічні сили прагнуть деформувати провідники та ізолюючі частини, на яких вони кріпляться.

КЗ супроводжується різким зниженням напруги в електромережах. В результаті виникає частковий або повний розлад електропостачання споживачів.

Профілактика КЗ передбачає такі заходи:

Правильний вибір, монтаж і експлуатація електричних мереж, електрообладнання;

Правильний вибір конструкції електрообладнання, способу встановлення і класу ізоляції;

Електричний захист електричних мереж, електрообладнання (швидкодіючі реле, автоматичні вимикачі, запобіжники).


Причини виникнення перевантаження та їх профілактика.


При проходженні струму по провідниках виділяється тепло, яке нагріває їх до температур, при яких посилюється окислювальні про­цеси, на дротах утворюються оксиди, які мають високий опір, в ре­зультаті чого збільшується опір контакту і відповідно кількість тепла, що призводить до старіння або руйнування ізоляції. І як наслідок – електричний пробій ізоляції і пошкодження пристою, а при наявності спалимої ізоляції та пожежо- і вибухонебезпечного середовища – по­жежа або вибух. Оскільки кожний провідник розрахований на певний струм, збільшення цього струму може призвести до перевантаження.

Причиною перевантаження може бути неправильний розрахунок при проектуванні мереж і схем (занижений переріз дротів, перевантаження радіоелементів, додаткове включення пристроїв до джерел живлення, на які вони не розраховані), зниження напруги в мережі.

Профілактика пожеж від перевантажень:

При проектуванні необхідно правильно вибирати переріз провідників мереж і схем за допустимою густиною струму, щоб


де Ідоп – допустима величина струму;

Ір – робоча величина струму;


В процесі експлуатації електричних мереж не можна вмикати додатково електроприймачі, якщо мережа на це не розрахована;

Для захисту електрообладнання від струмів перевантаження найбільш ефективними є автоматичні і електронні схеми захисту, вимикачі, теплові реле і плавкі запобіжники.


Причини виникнення перехідних опорів та їх профілактика.


Причиною пожежі і аварій можуть бути великі перехідні опори, які виникають в місцях з’єднань та розгалужень провідників, в контактах пристроїв або на клемах, якщо ці з’єднання зроблені неправильно або покрилися іржою. Падіння напруги в місці з’єднань можна визначити за формулою



де rk – контактний опір.

Контактний опір складається з двох опорів:



де rпер – перехідний опір, викликаний нерівною поверхнею металу, Ом;

rпл - опір, викликаний наявністю оксидних плівок на поверхні, Ом.

При проходженні струму навантаження в такому контактному з’єднанні виділяється деяка кількість тепла, пропорційна квадрату струму і опору точок дійсного дотику. Вона може бути настільки великою, що місця перехідних опорів сильно нагріваються. Якщо контакти будуть торкатися спалимих матеріалів, то ці матеріали можуть зайнятися, якщо ж є вибухонебезпечна суміш газів, парів або пилу – виникне вибух.

Профілактика пожеж від перехідних опорів:

Для збільшення площі дійсного дотику контактів необхідно використовувати пружні контакти або спеціальні сталеві пружини;

Для відводу тепла від точок дотику і розсіювання його необхідно виготовляти контакти певної маси і поверхні охолодження;

Всі контактні з’єднання повинні бути доступні для огляду.

Головним заходом запобігання пожеж і вибухів від електрообладнання є правильний вибір і експлуатація обладнання у вибухо- і пожежонебезпечних приміщеннях і виробництвах.

Приміщення з електронним мікроскопом у відповідності із ОНТП 24-86 відноситься до категорії Д.

Заходи пожежогасіння: фізичний та хімічний.

До фізичних способів відносяться:

Охолодження зони горіння;

Розбавлення реагуючих речовин в зоні горінні негорючими речовинами;

Ізоляція реагуючих речовин від зони горіння.

Хімічний спосіб – це хімічне гальмування реакції горіння.

До основних засобів гасіння пожежі відносяться:

Вода

Інертні гази

Піни хімічні та повітряномеханічні

Порошкові суміші


Література.


В. М. Кельман «Электронная оптика», Москва, 1968 г.

Т. Стэррок «Статическая и динамическая электронная оптика», Москва, 1958 г.

Л. Энгельс, Г. Клингеле «Растровая электронная микроскопия. Разрушение», Москва, 1986 г.

П. Хирш, А. Хоби, Р. Николсон, Д. Пэшли, М. Уэлан «Электронная микроскопия тонких кристаллов», Москва, 1968 г.

В. Косслет «Введение в электронную оптику», ИЛ, 1950 г.

Л. А. Катренко, І. П. Пістун «Охорона праці в галузі освіти», Суми. 2001 г.


Информация о работе «Изучение поверхности полупроводника с помощью сканирующего электронного микроскопа»
Раздел: Физика
Количество знаков с пробелами: 38202
Количество таблиц: 1
Количество изображений: 24

Похожие работы

Скачать
74029
3
22

... . Поскольку больная часть падающих электронов остается в подложке, то чувствительность резиста и форма профиля изображения зависят от материала подложки. Производительность систем ЭЛ экспонирования. Наряду с высоким разрешением достигнута приемлемая производитель-ность систем ЭЛ экспонирования. Важнейшие факторы, определяющие ее, приведены в табл 2. Стоимость ЭЛ экспонирования одной пластины по ...

Скачать
27778
0
3

... о всей поверхности, — в каждый момент времени мы имеем информацию только от участка непосредственно регистрируюемого зондом. Это не позволяет использовать in-situ методику. Атомно-силовая микроскопия позволяет получать информацию о поверхностном заряде, о поверхностной емкости, о поверхностной проводимости, о магнитных свойствах. Позволяет измерять эти параметры даже сквозь плёнку жидкости ...

Скачать
24172
0
12

... его над поверхностью образца в трех измерениях (рис. 1). Рис. 1. Типовая схема осуществления сканирующих зондовых методов (SPM) исследования и модификации поверхности в нанотехнологии. Обычно сканер имеет несколько ступеней регулирования положения зонда относительно образца с различной точностью и скоростью. Грубое позиционирование осуществляют трехкоординатными ...

Скачать
28456
0
7

... квадратный сантиметр. Наноустройства Нанотрубки могут составлять основу новых конструкций плоских акустических систем и плоских дисплеев, то есть привычных макроскопических приборов. Из наноматериалов могут быть созданы определенные наноустройства, например нано-двигатели, наноманипуляторы, молекулярные насосы, высокоплотная память, элементы механизмов нанороботов. Кратко остановимся на моделях ...

0 комментариев


Наверх