3.6. Центробежная обработка.

 

При центробежной обработке на обрабатываемую поверхность наносят последовательные удары рабочими элементами (шарами или роликами), свободно сидячими в радиальных отверстиях вращающегося диска. Рабочие тела под действием центробежных сил занимают крайнее положение в радиальных отверстиях, а при ударе обрабатываемую поверхность опускаются на глубину, равную натягу, отдавая энергию, создаваемую центробежной силой.

Метод применяют в основном для повышения сопротивления усталости деталей, работающих в тяжёлых условиях эксплуатации. При правильно назначенных условиях и режимах упрочнения с помощью этого метода удаётся повысить сопротивление усталости обрабатываемых деталей в 1,5-4 раза. При оптимальных параметрах упрочнения параметр шероховатости грубых поверхностей Rа 5-20 мкм уменьшается в десятки раз и достигается Rа 0,63-1,25 мкм, при обработке поверхностей с Rа 0,32-0,63 мкм параметр шероховатости уменьшается до Rа 0,08-0,16 мкм. Температура поверхности в момент деформирования может достигать 200 0С, однако, это не вызывает структурных изменений.

Твёрдость поверхностного слоя по сравнению с твёрдостью не наклёпанного слоя повышается в среднем при обработке силумина на 50 %, стали 25 — на 40 %, чугуна — на 30- 60% и латуни на 60 %. Глубина наклёпа 0,6-0,8 мм и более [4].


3.7. Ультразвуковое упрочнение (УЗУ).

 

Если при упрочнении статическими методами ППД инструменту сообщают дополнительно ультразвуковое колебание с частотой 18-24 кГц и амплитудой 15-30 мкм, то они становятся ударными методами (ультразвуковое обкатывание и т.п.)

Рисунок 3.8. Схема ультразвукового упрочнения (УЗУ).

Используют также УЗУ, когда загружаемым рабочим телам, помещённым в замкнутый объём вместе с обрабатываемой деталью, сообщают ультразвуковые колебания, под действием которых происходит упрочнение обрабатываемой поверхности. Процесс (рис.3.9.) напоминает виброударную обработку.

Рисунок 3.9. Схема УЗУ.

1 – концентратор;

2 – камера;

3 – обрабатываемая деталь;

4 – стальные шарики.

При обычном ультразвуковом упрочнении инструмент 2 (рис.3.10.) под действием статической и значительной ударной силы, создаваемой колебательной системой (ультразвуковым генератором магнитострикционным преобразователем 5 и концентратором 3), пластически деформирует поверхностный слой обрабатываемой детали 1.

Рисунок 3.10. Схема ультразвукового упрочнения.

1-обрабатываемая деталь;

2-рабочая часть инструмента;

3-концентратор;

4-ультразвуковой генератор;

5-магнитострикционный преобразователь;

6-направляющие.

Статическую силу Рст можно прикладывать с помощью пружины или груза,

 под действием которого все устройство может свободно перемещаться по направляющим 6 и поджиматься к детали 1. По сравнению, например, с обкатыванием шаром (ОШ) ультразвуковое упрочнение отличается следующими особенностями и преимуществами:

1-инструмент пластически деформирует поверхностный слой детали импульсно, с большой интенсивностью колебаний, в результате чего формирование сопровождается прерывистым и интенсивным трением;

2-кратность приложения силы при деформировании инструментом поверхности в 400 раз более (при ОШ 12-20 раз);

3-статическая сила, действующая на деталь, незначительна;

4-скорость деформации — переменная, её максимальное значение 200 м/мин и более, что превышает скорость деформирования при ОШ в десятки и сотни раз;

5-среднее давление, создаваемое в поверхностном слое детали под действием нормально направленной силы, в 3-9 раз больше, чем при ОШ;

6- энергия, расходуемая на искажение кристаллической решётки и идущая на внутренние микроструктурные преобразования, при УЗУ значительно выше, чем при0Ш;

7-температура места контакта инструмента с деталью в зоне деформирования 100-1500С, что в 3-5 раз меньше, чем при ОШ, а время нагрева при УЗУ очень мало (3 х 10-5 сек), поэтому не наблюдается снижения упрочнения, вызываемого действием высокой температуры;

8-в процессе УЗУ вследствие относительно больших напряжений и многократного приложения нагрузки напряжённо-деформированное состояние специфично.

Множественное скольжение дополнительно тормозит дислокацию. Плотность дислокаций намного больше, чем при ОШ. В результате степень наклёпа повышается в 1,2-1,5 раза и соответственно увеличивается уровень остаточных сжимающих напряжений.

Применение УЗУ по сравнению с ОШ может быть эффективно в следующих случаях:

1-для деталей термически и химико-термически обработанных сталей У10А, У12, Х40, ШХ 15, сталей аустенитной структуры 12Х18Н9Т и др., где применение других методов не позволяет получить значительный упрочняющий эффект;

2-для деталей и инструментов из твердых сплавов;

3-для деталей малой и неравномерной жёсткости, так же УЗУ характеризуется небольшой статической силой и временем деформирования.

К параметрам режима У относится: статическая сила Рст, амплитуда А колебаний инструмента, радиус его округления Г, частота колебаний f, эффективная масса инструмента М, продольная подача S, число рабочих ходов i, скорость обработки детали V.

Основные параметры упрочнения лежат в следующих пределах: частота ультразвуковых колебаний f = 2 х 104 амплитуда 2А = 10…20 мкм, статическая сила Рст = 30...300Н, время контактирования инструмента с деталью r = 3х10-5 с, отношение тангенциальной силы к нормальной Рm/PN = 0,7, скорость колебательного движения инструмента

V1 = 2Пf >400  (1.)

Примером эффективного применения УЗУ может служить упрочнение предварительно шлифованных рабочих поверхностей эвольвентного зуба зубчатых колёс из стали 45 (m = 1,5 мм; Z = 30). В результате УЗУ с оптимальным режимом (Рст = 50Н, 2А = 20 мкм, S = 0,1 мм/об, i = 1) Ra уменьшился с 0,4 мкм до 0,1 мкм, т.е. в 4 раза.

Микротвердость поверхностного слоя повысилась с НВ208 до НВ357 (на 71 %) и соответственно, повысился предел контактной выносливости на 10-20 % [4].

Проведённые сравнительные исследования качества поверхностного слоя наплавленных деталей (коленчатые валы двигателя ЗИЛ-130) после шлифования без ультразвука и выглаживания с УЗУ на рациональных режимах показали, что наибольший эффект получен на деталях после УЗУ. При этом твёрдость увеличилась до 30 % , толщина упрочнения составляет 0,6-0,8 мм, микротвердость увеличилась до 50 %, шероховатость уменьшилась с 1,63 до 0,2 мкм и образуется особый микрорегулярный ячеистый рельеф на поверхности [5].

Важным преимуществом УЗУ является также образование в поверхностном слое наплавленных деталей остаточных напряжений сжатия значительной силы (осевых Sz = 150...1бО Па 107, тангенциальных Рm = 120...130 Па 107). Уменьшение разброса твёрдости на поверхности наплавленного металла свидетельствует об образовании более однородной структуры [5].

Рациональным по качественным и эксплуатационным показателям наплавленных деталей является такой режим, при котором двойная амплитуда УЗК равняется 2А = 30...50 мкм, статическое усилие прижима инструмента и детали Рст = 400...600 Н, скорость вращения детали Vg = 0,33.. 0,99 м/с и продольная подача инструмента Sпр = 0,120,15 м/об.

Сравнительные лабораторные испытания на износостойкость наплавленных и упрочнённых ультразвуковым выглаживающим инструментом образцов, вырезанных из натуральных шеек коленчатых валов, показали их меньший приработочный износ по сравнению с не упрочнённым, примерно в 7 раз, а по сравнению с образцами не наплавленными (контрольными) из стали 45, закалённой ТВЧ, примерно в 4,7 раза.

Стендовые и эксплуатационные испытания коленчатых валов двигателя ЗИЛ-130 восстановленных наплавкой и упрочненных ультразвуковым инструментом, показали, что поломок их по причине усталости не обнаружено, а износостойкость оказалась в 2,2 раза выше по сравнению с не упрочнёнными ( на 63 % выше износостойкости новых валов) [5].


4.Выводы.

 

1.Анализ способов восстановления коленчатого вала двигателя ЗИЛ- 130 с учетом последующего использования методов ППД показал, что наиболее приемлемым и эффективным с точки зрения экономических, технологических и других факторов является наплавка под слоем флюса.

2.Анализ способов ППД показал, что наиболее прогрессивным является УЗУ, как способ, отвечающий высоким технологическим характеристикам упрочнённой поверхности (Ra, HRC и т.п.).


5.Рачет объема работ.

Выбор программы восстановления коленчатого вала двигателя ЗИЛ- 130:

На период 2004 г. предприятием запланировано произвести ремонт 150 двигателей ЗИЛ - 130 и столько же восстановит коленчатых валов данного двигателя. С учетом того, что парк машин в нашем регионе растет, и ремонт на других предприятиях сокращается, можно остановится на программе восстановления коленчатых валов – 300 шт. в месяц. Планирование на год затруднено, т.к. экономика ориентированна на свободные рыночные отношения и вся работа предприятия зависит от количества заказов и качества восстановленных деталей.

5.1.Режим работы и фонды времени.

Режим работы участка планируется в одну смену. Рабочая неделя устанавливается пятидневной, продолжительность рабочей смены – 8 часов.

Планируемый период работы участка по восстановлению коленчатых валов двигателя ЗИЛ -130 составляет один месяц. Все остальное время участок специализируется на восстановлении коленчатых валов различных марок автомобилей, в том числе и иностранного производства.

Фонды времени подразделяют на номинальные и действительные. Номинальным фондом называется время, которое может быть отработано за планируемый период на рабочем месте без учета каких бы то ни было потерь, то есть календарно [6,11].

Фн = (Дк-Дп-Дв)·tc·у, где (2)

Дк, Дп, Дв – количество дней календарных, праздничных, выходных соответственно.

Дк = 31, Дп = 1, Дв = 10;

tc = 8 часов – время смены;

у = 1 – количество смен.

Фн = (31- 11)·8 = 160 час.

Действительный фонд рабочего времени работы оборудования:

Фдо = Фн· ηо, где (3)

ηо – коэффициент, учитывающий простой оборудования (0,95)

Фдо = 160·0,95 = 152 час.

5.2.Такт производства.

Для ритмичной работы участка нужно согласовать работу на всех рабочих местах во времени. Для этого устанавливается единый для всех рабочих мест такт производства:

τ=Фдо/N=152ч./300к.в.=0,5ч/к.в (4)


6.Проектирование технологического процесса восстановления

коленчатого вала ЗИЛ-130.

Технический процесс проектируем применительно к абразивно-электрохимическому шлифованию, опираясь при этом на технологию ВНПО «Ремдеталь» [7,8].

Используем операции, связанные только с восстановлением шатунных и коренных шеек, т.е. частичное восстановление. Это связанно с тем, что на проектируемый участок поступают только коленчатые валы с дефектами коренных и шатунных шеек. С другими неисправностями коленчатые валы не принимаются.

6.1.Разработка маршрутной технологии.

 

1.Очистная.

2.Дефектовачная.

3.Разборочно-очистительная.

4.Термическая.

5.Очистная.

6.Контрольная.

7.Шлифовальная (для Ш.Ш.).

8.Шлифовальная (для К.Ш.).

9.Герметизирующая.

10.Наплавочная.

11.Термическая.

12.Правильная.

13.Герметизирующая (для К.Ш.).

14.Наплавочная (для К.Ш.).

15.Шлифовальная черновая (для 1ой и5ой К.Ш.).

16.Шлифовальная черновая (для Ш.Ш.).

17.Шлифовальная черновая (для К.Ш.).

18.Сверлильная.

19.Шлифовальная чистовая (для Ш.Ш.)

20.УЗУ (АЗХШ).

21.Шлифовальная чистовая (для К.Ш.).

22.УЗУ (АЗХШ).

23.Сборочная.

24.Балансировочная.

25.Разборочная.

26.Очистная.

27.Сборочная.

28.Контрольная.



Информация о работе «Проект восстановления коленчатого вала ЗИЛ 130 с применением ультразвукового упрочнения»
Раздел: Транспорт
Количество знаков с пробелами: 84502
Количество таблиц: 9
Количество изображений: 22

0 комментариев


Наверх