4.4.1 Эмиттерная термостабилизация

Одной из распространенных схем с обратной связью, предназначенных для стабилизации режима, является схема с эмиттерной стабилизацией [5], которая изображена на рисунке 4.7.


Рисунок 4.7 – Схема эмиттерной термостабилизации

Рассчитаем основные элементы схемы по следующим формулам:

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

 (4.28)

где Iдел. – ток делителя;

PRэ – мощность рассеиваемая на резисторе Rэ .


Выберем напряжение Uэ=3В и по формуле (4.22) определим сопротивление Rэ.

Базовый ток найдем из формулы (4.23).


Ток делителя рассчитываем по формуле (4.24).


Определим напряжение питания по формуле (4.27).


Значения сопротивлений базового делителя найдем из формул (4.25,4.26).


Мощность рассеиваемая на резисторе Rэ рассчитаем по формуле (4.28).


4.4.2 Коллекторная термостабилизация

Коллекторная стабилизация является простейшей и наиболее экономичной из всех схем термостабилизации. Стабилизация положения точки покоя осуществляется параллельной отрицательной обратной связью по напряжению, снимаемой с коллектора транзистора. Полное описание и работу схемы можно найти в книге [5]. Схема коллекторной стабилизации представлена на рисунке 4.8.


Рисунок 4.8 – Схема коллекторной термостабилизации

Рассчитаем основные элементы схемы по следующим формулам:

(4.29)

(4.30)

(4.31)

Выберем напряжение URк=7.5В и расчитаем значение сопротивления Rк по формуле (4.29).


Базовый ток найдем из формулы (4.23).


Зная базовый ток расчитаем сопротивление Rб по формуле (4.30).


Определим рассеиваемую мощность на резисторе Rк по формуле (4.31).


4.4.3 Активная коллекторная термостабилизация


В данном курсовом проекте использована активная коллекторная термостабилизация, которая является достаточно эффективной в мощных усилительных каскадах. Схема активной коллекторной термостабилизации изображена на рисунке 4.9.

Рисунок 4.9 – Схема активной коллекторной термостабилизации

VT1 – транзистор КТ814: bо= 40, Uкэдоп.=20В, Iк =2.5А;

VT2 – транзистор КТ930Б.

Рассчитаем элементы схемы по следующим формулам:

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)


Выберем напряжение UR4=1В и рассчитаем значение резистора R4 по формуле (4.32).

Базовый ток транзистора VT2 определим по формуле (4.33).


Напряжение в рабочей точке для транзистора VT1 найдем по формуле (4.34).

Значение сопротивления R2  расчитаем по формуле (4.35).


Базовый ток транзистора VT2 равен значению тока в рабочей точке транзистора VT1.


Базовый ток транзистора VT1 определим из формулы:


Ток делителя найдем по формуле (4.38).


Значение сопротивления R3 расчитаем по формуле (4.36).


Напряжение питания будет равно:


Значение сопротивления R1 расчитаем по формуле (4.37).


4.5 Расчет корректирующих цепей

4.5.1 Выходная корректирующая цепь


Для передачи без потерь сигнала от одного каскада многокаскадного усилителя к другому используется последовательное соединение корректирующих цепей (КЦ) и усилительных элементов [6]. На рисунке 4.10 изображен пример построения такой схемы усилителя по переменному току.

Рисунок 4.10 Схема усилителя с корректирующими цепями

Расчеты входных, выходных и межкаскадных КЦ ведутся с использованием эквивалентной схемы замещения транзистора приведенной на рисунке 4.11. Для получения максимальной выходной мощности в заданной полосе частот необходимо реализовать ощущаемое сопротивление нагрузки для внутреннего генератора транзистора, равное постоянной величине во всем рабочем диапазоне частот. Это можно реализовать, включив выходную емкость транзистора в фильтр нижних частот, используемый в качестве выходной КЦ. Схема включения выходной КЦ приведена на рисунке 4.11.

Рисунок 4.11 – Схема выходной корректирующей цепи

Выходную корректирующую цепь можно рассчитать с использованием методики Фано, которая подробно описана в методическом пособии [6]. Зная Свых и fв можно рассчитать элементы L1 и C1 .

Рассчитаем нормированное значение Свыхн по следующей формуле:


(4.39)

Исходя из таблицы, которая представлена в методическом пособии [6]. По значению нормированной выходной емкости находим нормированные значения L1 и C1, а так же коэффициент n. Получим следующие значения:


Разнормируем полученные значения. В результате получим:

 

(4.40)

(4.41)

(4.42)


Информация о работе «ШИРОКОПОЛОСНЫЙ УСИЛИТЕЛЬ КАЛИБРОВКИ РАДИОВЕЩАТЕЛЬНЫХ СТАНЦИЙ»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 29437
Количество таблиц: 4
Количество изображений: 0

Похожие работы

Скачать
18693
4
58

... Лит Масса Масштаб Изм Лист Nдокум. Подп. Дата УСИЛИТЕЛЬ ШИРОКОПОЛОСНЫЙ Выполнил Коновалов   КАЛИБРОВКИ Проверил Титов   РАДИОВЕЩАТЕЛЬНЫХ СТАНЦИЙ   СТАНЦИЙ Лист Листов   ТУСУР РТФ ...

Скачать
52664
21
7

... потока энергии П3-18   В данной работе используется измеритель плотности потока энергии электромагнитного поля П3-18 предназначенный для измерения средних значений плотности потока энергии (ППЭ) электромагнитного поля (ЭМП) в дальней зоне СВЧ источников излучения и непосредственно на рабочих местах персонала, обслуживающего радиотехнические установки. Основные элементы измерителя ППЭ: ü  ...

0 комментариев


Наверх