4.3 Расчет эквивалентных схем транзистора

4.3.1 Схема Джиаколетто

 

Многочисленные исследования показывают, что даже на умеренно высоких частотах транзистор не является безынерционным прибором. Свойства транзистора при малом сигнале в широком диапазоне частот удобно анализировать при помощи физических эквивалентных схем. Наиболее полные из них строятся на базе длинных линий и включают в себя ряд элементов с сосредоточенными параметрами. Наиболее распространенная эквивалентная схема- схема Джиаколетто, которая представлена на рисунке 4.5. Подробное

описание схемы можно найти [3].


Рисунок 4.5 – Схема Джиаколетто

Достоинство этой схемы заключается в следующем: схема Джиаколетто с достаточной для практических расчетов точностью отражает реальные свойства транзисторов на частотах f £ 0.5fт ; при последовательном применении этой схемы и найденных с ее помощью Y- параметров транзистора достигается наибольшее единство теории ламповых и транзисторных усилителей.

Расчитаем элементы схемы, воспользовавшись справочными данными и приведенными ниже формулами.

Справочные данные для транзистора КТ930Б:

при

при


Cк- емкость коллекторного перехода,

tс- постоянная времени обратной связи,

bо- статический коэффициент передачи тока в схеме с ОЭ.

Найдем значение емкости коллектора при Uкэ=10В по следующей формуле:

(4.11)

где U¢кэо – справочное или паспортное значение напряжения;


Uкэо – требуемое значение напряжения.

Сопротивление базы будет равно:

(4.12)


Найдем сопротивление эмиттера по формуле:

(4.13)

где Iко – ток в рабочей точке, занесенный в формулу в мА.


Проводимость база-эмиттер расчитаем по формуле:

(4.14)


Определим диффузионную емкость по формуле:

(4.15)


Сопротивление внутреннего источника тока будет равно:

(4.16)


Статический коэффициент передачи тока в схеме с ОБ найдем по формуле:


(4.17)

Крутизну транзистора определим по формуле:


(4.18)


4.3.2 Однонаправленная модель

 

Однонаправленная модель, так же как и схема Джиаколетто, является эквивалентной схемой замещения транзистора. Схема представляет собой высокочастотную модель, которая изображена на рисунке 4.6. Полное

описание однонаправленной модели можно найти в [4].


Рисунок 4.6 – Однонаправленная модель

Расчитаем элементы схемы воспользовавшись справочными данными и приведенными ниже формулами.

Справочные данные для транзистора КТ930Б:

Lб – индуктивность базового вывода;

Lэ – индуктивность эмиттерного вывода;

Gном1,2– коэффициент усиления по мощности в режиме двустороннего

согласования.

Определим входную индуктивность по следующей формуле:


(4.19)

Входное сопротивление равно сопротивлению базы в схеме Джиаколетто:


Выходное сопротивление найдем по формуле:


(4.20)


Выходную емкость найдем по формуле (4.11) при напряжении в рабочей точке.

Определим частоту fmax из следующей формулы:

(4.21)


где f – частота на которой коэффициент усиления по мощности имеет значение 3.5.

4.4 Расчет схем термостабилизации

Выбор схемы обеспечения исходного режима транзисторного каскада тесным образом связан с температурной стабилизацией положения рабочей точки. Объясняется это следующим. Важной особенностью транзисторов является зависимость их вольт-амперных характеристик от температуры р-n переходов и, следовательно, от температуры внешней среды. Это явление нежелательно, так как температурные смещения статических характеристик обуславливают не только изменения усилительных параметров транзистора в рабочей точке, но и приводят к перемещению рабочей точки. Изменения в положении рабочей точки в свою очередь сопровождаются дальнейшим изменением усилительных параметров, так как последние зависят от режима. Таким образом, электрические показатели усилителя оказываются подверженными влиянию температуры и при неблагоприятных условиях могут существенным образом отклониться от нормы.

Для сохранения режима работы транзистора в условиях непостоянства температуры окружающей среды в схему каскада вводят специальные

элементы температурной стабилизации. Существует три вида температурной стабилизации: эмиттерная стабилизация, коллекторная стабилизация и активная коллекторная стабилизация.


Информация о работе «ШИРОКОПОЛОСНЫЙ УСИЛИТЕЛЬ КАЛИБРОВКИ РАДИОВЕЩАТЕЛЬНЫХ СТАНЦИЙ»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 29437
Количество таблиц: 4
Количество изображений: 0

Похожие работы

Скачать
18693
4
58

... Лит Масса Масштаб Изм Лист Nдокум. Подп. Дата УСИЛИТЕЛЬ ШИРОКОПОЛОСНЫЙ Выполнил Коновалов   КАЛИБРОВКИ Проверил Титов   РАДИОВЕЩАТЕЛЬНЫХ СТАНЦИЙ   СТАНЦИЙ Лист Листов   ТУСУР РТФ ...

Скачать
52664
21
7

... потока энергии П3-18   В данной работе используется измеритель плотности потока энергии электромагнитного поля П3-18 предназначенный для измерения средних значений плотности потока энергии (ППЭ) электромагнитного поля (ЭМП) в дальней зоне СВЧ источников излучения и непосредственно на рабочих местах персонала, обслуживающего радиотехнические установки. Основные элементы измерителя ППЭ: ü  ...

0 комментариев


Наверх