4.2. Отделение символов в дискретной первичной форме


Предварительно определим понятие символа.

Назовем группой единиц множество единиц в одной строке матрицы, не разделенной нулями. Две группы единиц, лежащие в соседних строках изображения, с координатами концов по оси абсцисс a, b и c, d называются связными, если справедливо хотя бы одно из соотношений:


a Ь c Ь b;

a Ь d Ь b;

c - 1 = b;

d + 1 = a.


На рис.9.a приведены примеры связных групп единиц, а на рис. 9.б - несвязных. Под символом будем понимать множество связных групп единиц, для которых минимальный охватывающий их прямоугольник имеет размеры, принадлежащие интервалам размеров символов по высоте и ширине (рис.10 ). Подобное определение символа создает риск отделения части несимвольной информации.

Сущность задачи отделения символов из исходной матрицы I, описывающей изображение в дискретной первичной форме, сводится к нахождению в исходной матрице фрагмента, который содержит символы. Далее каждый такой фрагмент переписывается в отдельный кадр. Кадр представляет собой двоичную матрицу, размеры которой должны быть не меньше максимальных размеров символов. Затем, содержимое этих матриц анализируется в блоке распознавания.





















Рис. 9. Отношение связности групп единиц:

a - связные группы; б - несвязные группы.





Рис. 10. Символ как фрагмент связных групп единиц


4.3. Алгоритм отделения


Выполняется однократный просмотр матрицы I .

При этом осуществляется :

1. Получение информации о том, что связные конфигурации по размерам не превышают размеры символов.

2. Проверка связности между группами единиц (на основе указанных соотношений).

3. Фиксация результатов.


Для фиксации результатов такого просмотра используются маски, каждая из которых представляет собой область прямоугольной формы, состоящую из единиц. При этом используется поле масок M. Поле масок представляет собой двоичную матрицу, совпадающую по размерам с исходным полем изображения I. При совмещении поля изображения с полем масок каждая маска покрывает фрагмент поля I, содержащий связную конфигурацию единиц.

Каждая маска для выделяемой с ее помощью конфигурации имеет минимальные размеры, т.е. играет роль минимального охватывающего прямоугольника.

Проверка метрических ограничений, накладываемых на связные конфигурации, называемые символами, осуществляется достаточно просто, когда в распоряжении имеется соответствующая маска.


Более подходящей для решения задачи разделения изображения на символьную и несимвольную части является полигональная форма описания изображения.


4.4. Полигональная форма.


4.4.1. Граничный контур


Введем понятие граничного контура.

Граничный контур - циклическая последовательность углов поворота границы между черной и белой областями.

Пусть граничный контур обозначен gi.

В граничный контур включаются только узлы, отличающиеся от 180 градусов.

Угол поворота граничного контура обозначим ai .

Угол поворота ai характеризуется следующим набором параметров:

- координаты центра угла - x(ai), y(ai) ;

- направления L1 (ai), L2 (ai) первого и второго луча;

- величина угла V (ai).

В граничном контуре углы упорядочены. Это осуществляется таким образом, что при обходе границы между черным и белым область черного остается справа от направления движения.

Полигональная форма представляет собой совокупность граничных контуров.

На рис.11представлен фрагмент изображения.

1 2 3 4 5 6 7 8


































































а)


№ угла

x y L1 L2 V
1 4 5 0 90 90
2 5 3 90 0 90

б)


Рис. 11. а) фрагмент изображения, б) таблица значений параметров элементов граничного контура.


Достоинства полигональной формы:

- не вносит искажений;

- позволяет выделять резкие изгибы границ черной и белой областей;

- требует меньшего объема памяти (по сравнению с дискретной первичной формой в 10 - 20 раз).

Вопросы построения полигональной формы не будем рассматривать.



Информация о работе «Системное автоматизированное проектирование»
Раздел: Информатика, программирование
Количество знаков с пробелами: 138248
Количество таблиц: 8
Количество изображений: 0

Похожие работы

Скачать
20657
1
7

... литературе как "рабочая станция" (PC). Рис. 3. Структура рабочей станции проектирования электронных систем. Рис. 4. Структура ПО САПР. 4. Иерархические уровни представления электронных устройств Основным методом проектирования с применением САПР является блочно-иерархический метод или метод декомпозиции сложного объекта на подсистемы (блоки, узлы, компоненты). В этом случае ...

Скачать
90127
1
0

... него среде, знакомой ему по версии "AutoCAD 14. Однако более 400 усовершенствований делают работу конструктора существенно удобней и проще. 2. Технология автоматизированного проектирования в системе AutoCAD   2.1 Основы AutoCAD Чертить в системе AutoCAD — значит, формировать на экране дисплея изображение из отдельных графических элементов (примитивов), которые вводятся при помощи ...

Скачать
47390
3
1

... актуальностью информации, идентифицировать ошибки и избежать перепроектирования (по оценкам компании Aberdeen, не менее 70 % затрат на производство и сопровождение продукции приходится на этап проектирования). PLM-система способна предоставить пользователю информацию в форме, соответствующей выполняемым функциям в жизненном цикле создаваемого продукта: трехмерные модели, схематические диаграммы, ...

Скачать
43314
0
4

... являются Лоцман:PLM компании Аскон, PDM STEP Suite, разработанная под НПО "Прикладная логистика", Party Plus компании Лоция-Софт и т.д. Итак, термин САПР (система автоматизации проектирования) подразумевает комплексный подход к разработке изделия и включает совокупность систем CAD/CAM/CAE. Развитие систем геометрического моделирования, анализа и расчета характеристик изделия сопровождается ...

0 комментариев


Наверх