3. Простейшие типы точек покоя.

Пусть имеем систему дифференциальных уравнений

ж dx / dt = P ( x , y ),

н (A)

о dy / dt = Q ( x , y ).


Точка ( x0 , y0 ) называется точкой покоя или особой точкой системы (A), если P ( x0 , y0 ) = 0 , Q ( x0 , y0 ) = 0.

Рассмотрим систему

ж dx / dt = a11 x + a12 y,

н (7)

о dy / dt = a21 x + a22 y.


где aij ( i , j = 1 , 2 ) - постоянные. Точка ( 0 , 0 ) является точкой покоя системы (7). Исследуем расположение траектории системы (7) в окрестности этой точки. Ищем решение в виде

x = a 1 e k t , y = a 2 e k t . (8)

Для определения k получаем характеристическое уравнение

a11 - k a12

= 0. (9)

a21 a22 - k


Рассмотрим возможные случаи.

I. Корни характеристического уравнения действительны и различны. Подслучаи :

1) k1 < 0, k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).

2) k1 > 0, k2 > 0. Точка покоя неустойчива (неустойчивый узел).

3) k1 > 0, k2 < 0. Точка покоя неустойчива (седло).

4) k1 = 0, k2 > 0. Точка покоя неустойчива.

5) k1 = 0, k2 < 0. Точка покоя устойчива, но не асимптотически.

II. Корни характеристического уравнения комплексные : k1 = p + q i, k2 = p - q i. Подслучаи :

1) p < 0 , q № 0. Точка покоя асимптотически устойчива (устойчивый фокус).

2) p > 0 , q № 0. Точка покоя неустойчива (неустойчивый фокус).

3) p = 0, q № 0. Точка покоя устойчива (центр). Асимптотической устойчивости нет.

III. Корни кратные: k1 = k2 . Подслучаи :

1) k1 = k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).

2) k1 = k2 > 0. Точка покоя неустойчива (неустойчивый узел).

3) k1 = k2 = 0. Точка покоя неустойчива. Возможен исключительный случай, когда все точки плоскости являются устойчивыми точками покоя.

Для системы линейных однородных уравнений с постоянными коэффициентами

dxin

= е ai j xj ( i = 1 , 2 , ... , n ) (10)

dt i=1


характеристическим уравнением будет

a11 - k a12 a13 ... a1n

a21 a22 - k a23 ... a2n = 0. (11)

. . . . . . . .

an1 an2 an3 ... ann - k


1) Если действительные части всех корней характеристического уравнения (11) системы (10) отрицательны, то точка покоя xi ( t ) є 0 ( i = 1 , 2 , ... , n ) асимптотически устойчива.

2) Если действительная часть хотя бы одного корня характеристического уравнения (11) положительна, Re k i = p i > 0, то точка покоя xi ( t ) є 0 ( i = 1, 2, ... n ) системы (10) неустойчива.

3) Если характеристическое уравнение (11) имеет простые корни с нулевой действительной частью (т.е. нулевые или чисто мнимые корни ), то точка покоя xi ( t ) є 0 ( i = 1, 2, ... n ) системы (10) устойчива, но не асимптотически.

Для системы двух линейных линейных уравнений с постоянными действительными коэфициентами

.

ж x = a11 x + a12 y,

н . (12)

о y = a21 x + a22 y


характеристическое уравнение (9) приводится к виду

k2 + a1 k + a2 = 0.

1) Если a1 > 0 , a2 > 0, то нулевое решение системы (12) асимптотически устойчиво.

2) Если а1 > 0 , a2 = 0, или a1 = 0 , a2 > 0 , то нулевое решение устойчиво, но не асимптотически.

3) Во всех остальных случаях нулевое решение неустойчиво; однако при a1 = a2 = 0 возможен исключительный случай, когда нулевое решение устойчиво, но не асимптотически.


Список литературы:


1. Краснов М. Л., Киселев А. И., Макаренко Г. И. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. М.: Наука , 1981.

2. Шестаков А. А., Малышева И. А., Полозков Д. П. Курс высшей математики. М.: ВШ , 1987.

3. Иващенко Н. Н. Автоматическое регулирование. М.: ВШ , 1973.

4. Абрамович И. Г., Лунц Г. Л., Эльсгольц Л. Э. Функции комплексого переменного. Операционное исчисление. Теория устойчивости. М.: Наука , 1968.

5. Чемоданов Б.К. Математические основы теории автоматического регулирования. М.: ВШ ,


Информация о работе «Теория устойчивости»
Раздел: Математика
Количество знаков с пробелами: 19438
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
28116
0
6

... строки. Очевидно, что такая операция не изменит знака членов следующей строки и не отразится на конечном результате. Например, элементы третьей строки таблицы (45) можно было бы разделить на 8 для упрощения последующих вычислений. Анализ результатов устойчивости в нелинейных системах. При исследовании устойчивости в цепях постоянного тока при малых возмущениях обнаружение неустойчивости ...

Скачать
43854
0
18

... начальным условиям  . Пусть  — характеристическое уравнение для определения мультипликаторов. Так как , то оно принимает вид , где . 2. Устойчивость решений систем дифференциальных уравнений. 2.1. Устойчивость по Ляпунову. Вводя определение устойчивости по Лагранжу и Пуассону в пункте 1.3, описывались свойства одной отдельно взятой траектории. Понятие устойчивости по Ляпунову характеризует ...

Скачать
68613
0
0

... владеет Украина, является одним из важнейших измерений ее миссии. То, что она призвана дать мировому сообществу будущего, с точки зрения общечеловеческого развития, становится глобальной миссией Украины. Интерпретация устойчивого развития по М. Руденко позволяет определять наиболее ценные из интеллектуальных достижений, которые должны передаваться потомкам, и формулировать требования к ним. Так, ...

Скачать
31397
0
9

... были определены для всех подставляемых в них значений аргументов. Таким образом, точка с координатами  должна принадлежать множеству  для всех значений  на интервале . Устойчивость по Ляпунову Рассмотрим систему дифференциальных уравнений (??) Выделим некоторое решение  системы (??) и назовем его невозмущенным решением. Решение  назовем устойчивым в смысле Ляпунова ...

0 комментариев


Наверх