2.2 Микронеоднородное строение стекол.

Согласно современным пред­ставлениям, все однофазные стекла имеют микронеоднородное строе­ние. Речь идет об образовании в структуре микрообластей размером от 1 до 20 нм, отличающихся химическим составом или геометрическим упорядочением в расположении частиц. Прямые доказательства микро­неоднородного строения стекол были получены методами рентгенострук­турного, электронномикроскопичес-кого, спектрального анализов.

Микрообласти не имеют поверхностей раздела фаз. Они являются неотъемлемой частью структуры сложного однофазного стеклообразно­го силиката, но концентрация модифицирующих компонентов в них вы­ше или ниже средней статистической.

Идея о микронеоднородном строении стекол была заложена в гипо­тезе А. А. Лебедева и получила развитие в работах Е. А. Порай-Коши-ца, К. С. Евстропьева, Н. В. Гребенщикова, О. С. Молчановой, С. П. Жданова. На рис. 2.2 представлена схема образования геометри­чески и химически упорядоченных областей («кристаллитов» по А. А. Ле­бедеву) в стеклах. Четко видно равномерное распределение этих об­ластей в микрообъеме, отсутствие границ раздела фаз, постепенный пе­реход от геометрически упорядоченного строения микрообласти к полностью неупорядоченному строению каркаса из тетраэдров SiО4.

Щелочно-боросиликатные стекла являются одним из примеров то­го, что при микронеоднородном строении может наступить фазовое раз­деление, сопровождающееся образованием границ раздела фаз. При выщелачивании стекол в области составов, отмеченных на рис. 2.1, растворами соляной, уксусной и других кислот образуется высокопорис­тый кремнеземистый каркас (95—96 % SiO2), сохраняющий исходную форму, размеры и прочность (кварцоидные стекла, викор). Средний ди­аметр пор, в которых располагается натриево-боратная фаза, составляет 2—6 нм.

 

 

3. Свойства стекол.

Все типы стекол, независимо от их химического состава и темпера­турной области затвердевания, обладают специфическими свойствами, которые отличают их от кристаллов и жидкостей.

Стекла рентгеноаморфны вследствие неупорядоченного атомного строения. В структуре стекла отсутствует дальний порядок, т. е. систе­матическая повторяемость элементарных объемов структуры, характер­ная для кристаллических веществ.

Если ориентировочно определить межплоскостное расстояние, соот­ветствующее максимуму аморфного гало, то оно оказывается близким основному дифракционному максимуму кристобалита—0,415 нм. Однако в структуре стекла частицы находятся не на строго определенных рас­стояниях, как в кристобалите или других кристаллических модифика­циях кварца, а на расстояниях больших и меньших относительно неко­торого среднестатистического значения.

Стекла изотропны, если они однородны по составу, свободны от на­пряжений и дефектов. Изотропия свойств стекол, как и других аморф­ных сред, обусловлена отсутствием направленной в пространстве ори­ентации частиц. Оптическая анизотропия может возникнуть в стекле в результате действия растягивающих или сжимающих напряжений (яв­ления оптической анизотропии).

Температурный интервал стеклования. Стекла не имеют определен­ной температуры затвердевания или плавления. Оба эти процесса про­исходят постепенно в некотором температурном интервале. При охлаж­дении расплав переходит из жидкого в пластическое состояние, и только затем—в твердое (процесс стеклования). Наоборот, при нагревании стекло переходит из твердого в пластическое состояние, при более вы­соких температурах—в жидкое (размягчение стекла).

Температурный интервал, в котором происходит процесс стеклования или обратный ему процесс размягчения, называется интервалом стекло­вания и ограничен двумя температурами: со стороны высоких темпера­тур Тf, со стороны низких температур Tg (температура стеклования) (рис. 3.1).

При температуре Tg стекло обладает свойствами твердого упругого тела с хрупким разрушением. Температура Tf является границей пла­стического и жидкого состояний. При температуре Тf из стекломассы уже удается вытягивать тонкие нити.

Понятия о Tg и Tf были введены Тамманом. Подстрочные индексы «g» и «f» являются первыми буквами слов «Glass» — стекло и «Flissigkeit» — жидкость.

 

Рис. 3.1. Зависимость свойства Р и его производных в интервале стекло­вания (по Тамману)

/— твердое состояние; // — пластическое; III — жидкое (расплав)

Рис. 3.2. Влияние условий переохлаж­дения на мольный объем вещества в расплавленном, кристаллическом и стеклообразном состояниях.

Процессы размягчения стекла или затвердевания стекломассы яв­ляются однофазными в отличие от плавления кристаллических веществ или кристаллизации расплавов. При размягчении стекла в интервале стеклования отсутствует жидкая фаза.

Свойства стекол по характеру изменения в интервале стеклования делят на три группы. К первой группе относятся свойства Р, характе­ризующие функцию состояния веществ (внутренняя энергия Е, мольный объем V, энтальпия Н, энтропия S) и кинетические свойства (вязкость), удельное сопротивление r). Свойства первой группы с повышением температуры изменяются постепенно. В интервале стеклования кривая имеет закругленный перегиб (рис. 3.1, кривая 1), соответствующий наи­более резкому изменению свойств первой группы. Свойства второй груп­пы представляют собой первую производную по температуре dP/dT от свойств первой группы (коэффициенты термического расширения—ли­нейный и объемный, теплоемкость). Кривая 2 характеризует темпера­турный ход зависимости свойств второй группы. Можно видеть, что в интервале стеклования первая производная dP/dT имеет точку переги­ба Tg. Третья группа включает свойства (теплопроводность, диэлектри­ческие потери), которые являются вторыми производными по темпера­туре от функций состояния (кривая 3). Температурная зависимость d2P/dT2  имеет максимум или минимум в точке Tw.

Характер изменения свойств стекол при нагревании резко отличается от температурной зависимости свойств кристаллических веществ. Для последних нет деления свойств на группы, характер температурных кри­вых однотипен: незначительное линейное изменение свойств до темпера­туры плавления, резкое скачкообразное изменение свойств при темпе­ратуре плавления. Температуры Tg, Tw, Tf лежат всегда ниже темпера­туры плавления соответствующего кристалла.

Значения температур Tg, Tf, а также интервал стеклования (Tg—Tf) зависят от состава стекла.

Температуры Tg и Tf принадлежат к числу характеристических то­чек на температурной кривой вязкости. Температуре стеклования Tg со­ответствует вязкость стекломассы, равная 10123 Па-с, а тем­пературе Tf—вязкость 108 Па-с.

Из (рис. 3.2) можно видеть, что объем стекла в отличие от объема кристаллического вещества не является константой для данного состава. Он зависит от температурно-временных условий получения стекла.

Изотермическая выдержка закаленного стекла при температуре (T<Tg) будет сопровождаться уменьшением объема по прямой lт в связи со стремлением структуры достичь равновесного состояния при температуре Т (см. рис. 3.2). Время структурных перестроек в области низких температур исключительно велико

Неравновесное состояние структуры стекла находит свое выражение в явлениях термического последействия (так называемое, «вековое повы­шение точки нуля» и «депрессия точки нуля»), широко известных при эксплуатации точных стеклянных шкал и термометров.


Информация о работе «Стекло. Стекловолокно. Стеклоэмали»
Раздел: Разное
Количество знаков с пробелами: 54522
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
116808
2
6

... лакокрасочных составов и покрытий проводятся по указаниям соответствующих научно-технических документации. 2. Перспективы развития производства, торговли лаками и лакокрасочными изделиями Сегодня на российском рынке широко представлены лакокрасочные материалы как отечественного, так и зарубежного производства. Из отечественных покровных ремонтных материалов по-прежнему имеется большой выбор ...

Скачать
55417
0
0

... утеплителя следует принимать минераловатные плиты на синтетическом связующем (основное требование – утеплитель должен быть из негорючего материала). Основные вопросы при работе с вентфасадами Облицовочный материал навесного вентилируемого фасада крепится к стене с помощью основы всей конструкции - деревянного или металлического каркаса. При этом, между облицовкой и стеной можно располагать ...

0 комментариев


Наверх