1.21.5 Определяем режим течения пара в межтрубном пространстве

,

где Reп - критерий Рейнольдса для пара;

νп - коэффициент кинема­тической вязкости пара, , (uп=3,7 10-6),

Reп==118892.496

Если Re> 104 - режим течения турбулентный. Тогда критерий Нуссельта для пара составит

где Ргп - критерий Прандтля для пара, (Prп=1,2).

Полученные результаты подставляем в формулу.

Nuп=0,023 86405,40,8 1,20,4=284.134;

αп==24220.997.


1.22 Вычисляем коэффициент теплопередачи в 1- и зоне

, ,

где δст-толщина трубки, м; (δст=0,001 м),

δн = 0,2-толщина накипи, мм;

λст-коэффициент теплопроводности материала трубки, ;

ст=38),

λн=3,49 коэффициент теплопроводности накипи, .

k==8005.83

1.23. Определяем температурный напор в 1-й зоне

, 0С ,

где t``` - температура воды на границе между зонами, °С,(t```=88,37oC),

, 0C ,

t```==88,37 oC ;

Δt1==78.32 oC.


1.24 Поверхность теплообмена первой зоны составит

, м2,

F1==0,4846 м2.

1.25 Рассчитаем поверхность теплообмена во 2-й зоне.

Будем считать, что в этой зоне коэффициент теплоотдачи от внутренней стенки трубки к жидкости равен коэффициенту тепло­отдачи в 1-ой зоне. Это допустимо, так как свойства воды во 2-й зоне мало отличаются от свойств воды в 1-й зоне.

Определим коэффициент теплопередачи для 2-й зоны k2 гра­фоаналитическим методом. Для этого предварительно находим для различных участков перехода теплоты зависимость между удель­ным тепловым потоком q и перепадом температур Δt.

1.25.1 Передача теплоты от пара к стенке.

1.25.2 Определяем удельный тепловой поток

, ,

где В' - безразмерный коэффициент; (В`=16557,04),

hтр - предполагаемая высота трубок, м, (hтр=4м).

Вычисляем безразмерный коэффициент

,

В`=1,34 [5700+56 160-0,09 1602]=16557,04;

q1==308.215.

Задавшись рядом значений Δt1, вычислим соответствующие им величины Δt10,75 и q1. Строим кривую (рис. 3).

Таблица 5

Δt1

10 20 30 40 50 60

Δt10.75

5.6 9.5 12.8 15.9 18.8 21.6

q1

66,2 112,1 151,04 187,62 221,84 254,88

1.26 Передача теплоты через стенку.

1.26.1 Определяем плотность теплового потока

, ,

Задавшись двумя значениями Δt2, вычисляем соответствую­щие им величины q2. Строим кривую (рис. 3).

Таблица 6

Δt2

5 10 15 20

q2

190 380 570 760

1.27 Передача теплоты через накипь.

1.27.1 Вычисляем удельный тепловой поток

, ,

Задавшись двумя значениями Δt3, определим соответствую­щие им величины q3. Строим кривую (рис. 3).


Таблица 7

Δt3

5 10 20 30 40

q3

87,25 174,5 349 523,5 698

1.28 Передача теплоты от накипи к воде.

1.28.1 Вычисляем удельный тепловой поток

, ,

Задавшись двумя значениями Δt4, определим соответствую­щие им величины q4. Строим кривую (рис. 3).

Таблица 8

Δt4

5 10 15 20

q4

38,5 77 115,5 154


Информация о работе «Расчет пароводяного подогревателя»
Раздел: Разное
Количество знаков с пробелами: 29705
Количество таблиц: 8
Количество изображений: 236

Похожие работы

Скачать
13825
6
1

... 0,12 0,1 0,09 0,08 0,072 Строим график зависимости : 5. Подбор критериальных уравнений для имеющих место случаев теплообмена т.о. аппаратах. Определение коэффициентов теплоотдачи и теплопередачи Критерий Нуссельта (безразмерный коэффициент теплоотдачи), характеризует теплообмен между поверхностью стенки и жидкостью (газом).  ; d - диаметр; α- коэф. конвективной теплоотдачи, ...

Скачать
18762
2
9

... , ºС 75 14 Температура конденсата после подогревателя, ºС 85 15 Температура конденсата после подогревателя, ºС 90 16 Температура воды перед и после ХВО, ºС 30 2.Расчет тепловой схемы котельной   2.1 Определение параметров воды и пара При давлении Р1 = 1,32 МПа в состоянии насыщения имеем [1-32] = 192 ºС, = 2786,3 кДж/кг,  = 816,5 ...

Скачать
19398
15
10

... местных сопротивлений Sxмт определена по указанной выше формуле, в противном случае расчет потерь Dpмт значительно усложняется. (мм вод. ст.) Сведем полученные результаты в Таблицу 6 и сравним их между собой. Таблица 6 Расчетные данные кожухотрубчатого и секционного водоводяного теплообменников Тип теплообменника Коэффи-циент теплопе-редачи k, ккaл/(м2·ч·гpaд) Темпера-турный ...

Скачать
23896
4
1

... водопроводной воды. Охлажденная до tсл=43оС продувочная вода сливается в канализацию или используется для технических целей. Основные положения о тепловой схеме котельной Современная производственно-отопительная котельная оснащена разнообразным тепломеханическим оборудованием с развитой сетью паропроводов, трубопроводов сырой и питательной воды, конденсатопроводов, дренажей. Кроме котельного ...

0 комментариев


Наверх