2.8.4. Математические труды.

Сохранившиеся математические сочинения Архимеда можно разделить на три группы. Сочинения первой группы посвящены в основном доказательству теорем о площадях и объемах криволинейных фигур или тел. Сюда относятся трактаты О шаре и цилиндре, Об измерении круга, О коноидах и сфероидах, О спиралях и О квадратуре параболы. Вторую группу составляют работы по геометрическому анализу статических и гидростатических задач: О равновесии плоских фигур, О плавающих телах. К третьей группе можно отнести различные математические работы: О методе механического доказательства теорем, Исчисление песчинок, Задача о быках и сохранившийся лишь в отрывках Стомахион. Существует еще одна работа – Книга о предположениях (или Книга лемм), сохранившаяся лишь в арабском переводе. Хотя она и приписывается Архимеду, в своем нынешнем виде она явно принадлежит другому автору (поскольку в тексте имеются ссылки на Архимеда), но, возможно, здесь приведены доказательства, восходящие к Архимеду. Несколько других работ, приписываемых Архимеду древнегреческими и арабскими математиками, утеряны.

Дошедшие до нас работы не сохранили своей первоначальной формы. Так, судя по всему, I книга трактата О равновесии плоских фигур является отрывком из более обширного сочинения Элементы механики; кроме того, она заметно отличается от II книги, написанной явно позднее. Доказательство, упоминаемое Архимедом в сочинении О шаре и цилиндре, было утрачено ко 2 в. н.э. Работа Об измерении круга сильно отличается от первоначального варианта, и предложение II в ней скорее всего заимствовано из другого сочинения. Заглавие О квадратуре параболы вряд ли могло принадлежать самому Архимеду, так как в его время слово «парабола» еще не использовалось в качестве названия одного из конических сечений. Тексты таких сочинений, как О шаре и цилиндре и Об измерении круга, скорее всего, подвергались изменениям в процессе перевода с дорийско-сицилийского на аттический диалект.

Задача о трисекции угла. Задача о делении угла на три равные части возникла из потребностей архитектуры и строительной техники. При составлении рабочих чертежей, разного рода украшений, многогранных колоннад, при строительстве, внутренней и внешней отделки храмов, надгробных памятников древние инженеры, художники встретились с необходимостью уметь делить окружность на три равные части, а это часто вызывало затруднения. Оригинальное и вместе с тем чрезвычайно простое решение задачи о трисекции угла дал Архимед.

Измерение круга. Задача о квадратуре круга заключается в следующем: построить квадрат, площадь которого была бы равна площади данного круга. Большой вклад в решение этой задачи внес Архимед. В своем трактате "Измерение круга" он доказывает следующие три теоремы:

- Теорема первая: Площадь круга равна площади прямоугольного треугольника, один из катетов которого равняется длине окружности круга, а другой радиусу круга.

- Теорема вторая: Площадь круга относится к площади квадрата, построенного на диаметре, приблизительно, как 11:14.

- Теорема третья: C-3d < d и C-3d > d, где С -длина окружности, а d-ее диаметр. Откуда, d < C-3d < d. Верхнюю и нижнюю границы для числа Архимед получил путем последовательного рассмотрения отношений периметров к диаметру правильных описанных и вписанных в круг многоугольников, начиная с шестиугольника и кончая 96-угольником. Если приравнять верхней границе, то получим архимедово значение (архимедово число).

В группу инфинитезимальных методов входят: метод исчерпывания, метод интегральных сумм, дифференциальные методы. Одним из самых ранних методов является метод интегральных сумм. Он применялся при вычислении площадей фигур, объемов тел, длин кривых линий. Для вычисления объема, тело вращения разбивается на части, и каждая часть аппроксимируется (приближается) описанными и вписанными телами, объемы которых можно вычислить. Теперь остается выбрать аппроксимирующие сверху и снизу тела таким образом, чтобы разность их объемов могла быть сделана сколь угодно малой.

При доказательстве теорем о площадях фигур и объемах тел, ограниченных кривыми линиями или поверхностями, Архимед постоянно использует метод, известный как «метод исчерпывания». Изобрел его, вероятно, Евдокс (расцвет деятельности ок. 370 до н.э.) – по крайней мере, так считал сам Архимед. К этому методу время от времени прибегает и Евклид в XII книге Начал. Доказательство с помощью метода исчерпывания, в сущности, представляет собой косвенное доказательство от противного. Иначе говоря, утверждение «А равно В» считается истинным в том случае, когда принятие противоположного утверждения, «А не равно В», ведет к противоречию. Основная идея метода исчерпывания заключается в том, что в фигуру, площадь или объем которой требуется найти, вписывают (или вокруг нее описывают, либо же вписывают и описывают одновременно) правильные фигуры. Площадь или объем вписанных или описанных фигур увеличивают или уменьшают до тех пор, пока разность между площадью или объемом, которые требуется найти, и площадью или объемом вписанной фигуры не становится меньше заданной величины. Пользуясь различными вариантами метода исчерпывания, Архимед смог доказать различные теоремы, эквивалентные в современной записи соотношениям S = 4pr2 для площади поверхности шара, V = 4/3pr3 для его объема, теореме о том, что площадь сегмента параболы равна 4/3 площади треугольника, имеющего те же оcнование и высоту, что и сегмент, а также многие другие интересные теоремы.

Ясно, что, используя метод исчерпывания (который является скорее методом доказательства, а не открытия новых соотношений), Архимед должен был располагать каким-то другим методом, позволяющим находить формулы, которые составляют содержание доказанных им теорем. Один из методов нахождения формул раскрывает его трактат О механическом методе доказательства теорем. В трактате излагается механический метод, при котором Архимед мысленно уравновешивал геометрические фигуры, как бы лежащие на чашах весов. Уравновесив фигуру с неизвестной площадью или объемом с фигурой с известной площадью или объемом, Архимед отмечал относительные расстояния от центров тяжести этих двух фигур до точки подвеса коромысла весов и по закону рычага находил требуемые площадь или объем, выражая их соответственно через площадь или объем известной фигуры. Одно из основных допущений, используемых в методе исчерпывания, состоит в том, что площадь рассматривается как сумма чрезвычайно большого множества плотно прилегающих друг к другу «материальных» прямых, а объем – как сумма плоских сечений, тоже плотно прилегающих друг к другу. Архимед считал, что его механический метод не имеет доказательной силы, но позволяет получить предварительный результат, который впоследствии может быть доказан более строгими геометрическими методами.

Хотя Архимед был в первую очередь геометром, он совершил ряд интересных экскурсов и в область численных расчетов, пусть примененные им методы и не вполне ясны. В предложении III сочинения Об измерении круга он установил, что число p меньше История математики. Александрийская школаи большеИстория математики. Александрийская школа. Из доказательства видно, что он располагал алгоритмом получения приближенных значений квадратных корней из больших чисел. Интересно отметить, что у него приведена и приближенная оценка числа История математики. Александрийская школа, а именно: История математики. Александрийская школа. В сочинении, известном под названием Исчисление песчинок, Архимед излагает оригинальную систему представления больших чисел, позволившую ему записать число История математики. Александрийская школа, где само Р равно История математики. Александрийская школа. Эта система потребовалась ему, чтобы сосчитать, сколько песчинок понадобилось бы, чтобы заполнить Вселенную.

В труде О спирали Архимед исследовал свойства т.н. архимедовой спирали, записал в полярных координатах характеристическое свойство точек спирали, дал построение касательной к этой спирали, а также определил ее площадь. Эта спираль изучалась Архимедом приблизительно в 225 году до н.э. в работе "О Спиралях". Вы можете представить спираль Архимеда как траекторию муравья, перемещающегося с постоянной скоростью по абсолютно прямой веточке, в то время как веточка вращается вокруг одного из краев с постоянной угловой скоростью. Или, например, можете представить муравья, перемещающегося по секундной стрелке часов.

В истории физики Архимед известен как один из основоположников успешного применения геометрии к статике и гидростатике. В I книге сочинения О равновесии плоских фигур он приводит чисто геометрический вывод закона рычага. По сути, его доказательство основано на сведении общего случая рычага с плечами, обратно пропорциональными приложенным к ним силам, к частному случаю равноплечего рычага и равных сил. Все доказательство от начала и до конца пронизано идеей геометрической симметрии.

В своем сочинении О плавающих телах Архимед применяет аналогичный метод к решению задач гидростатики. Исходя из двух допущений, сформулированных на геометрическом языке, Архимед доказывает теоремы (предложения) относительно величины погруженной части тел и веса тел в жидкости как с большей, так и с меньшей плотностью, чем само тело. В предложении VII, где говорится о телах более плотных, чем жидкость, выражен т.н. закон Архимеда, согласно которому «всякое тело, погруженное в жидкость, теряет по сравнению со своим весом в воздухе столько, сколько весит вытесненная им жидкость». В книге II содержатся тонкие соображения относительно устойчивости плавающих сегментов параболоида.


Информация о работе «История математики. Александрийская школа»
Раздел: Математика
Количество знаков с пробелами: 83706
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
49799
0
0

... факт; доказательство получается с помощью обратной процедуры.) Принято считать, что последователи Платона изобрели метод доказательства, получивший название «доказательство от противного». Заметное место в истории математики занимает Аристотель, ученик Платона. Аристотель заложил основы науки логики и высказал ряд идей относительно определений, аксиом, бесконечности и возможности геометрических ...

Скачать
20252
0
0

... и понятие актуальной бесконечности. Аристотель (384-322 гг. до н.э.) отчетливо различает два вида бесконечности: потенциальную и актуальную. Понятие актуальной бесконечности в древней Греции не получило развития как в философии, так и в математике. Понятие бесконечности подвергалось серьезной критике со стороны Зенона Элейского (около 490-430 гг. до н.э.). Зенон был учеником Парменида, главы ...

Скачать
54001
3
18

... координат состоит в том, что его применение избавляет от необходимости прибегать к наглядному представлению сложных пространственных изображений. Можно выделить следующие цели изучения метода координат в школьном курсе геометрии: - дать учащимся эффективный метод решения задач и доказательства ряда теорем; - показать на основе этого метода тесную связь алгебры и геометрии; - способствовать ...

Скачать
141207
0
0

... схоларх афинской школы платоников специально рассматривает проблему возвращения и в чисто концептуальном плане, что представляет безусловный интерес для проводимого здесь подхода к истории античной философии, начавшейся с сакрализации текстов Гомера и "древнейших теологов" и завершающейся их глобальным осмыслением. Приведем некоторые размышления Дамаския о возвращении. "Познаваемое является ...

0 комментариев


Наверх