1.9 Требования к устройствам электропитания

Современная аппаратура МСП PDH и SDH предъявляет высокие требования к системам и устройствам электропитания, составляющим до 25 % объема аппаратуры ТКС. По мере микроминиатюризации аппаратуры передачи намечается тенденция роста этой величины. В аппаратуре транспортных систем SDH обычно используется два блока питания, работающих параллельно на общую нагрузку. В случае выхода из строя одного блока питания другой берет на себя всю нагрузку.

С увеличением объема передаваемой информации и повышением ее роли в автоматизированных системах управления к электропитанию аппаратуры ТКС предъявляется все более жесткие требования.

К числу основных требований, которым должны отвечать системы и устройства электропитания, следует отнести бесперебойность подачи напряжения к аппаратуре связи, стабильность основных параметров во времени, электромагнитную совместимость с питаемой аппаратурой, высокие экономические показатели, устойчивость к внешним механическим и климатическим воздействиям и минимальный объем работы при эксплуатационном обслуживании.

Чтобы системы и устройства электропитания отвечали изложенным выше требованиям, они должны базироваться на следующих принципах:

максимальное использование энергосистем центральных и местных электростанций в качестве основных и наиболее дешевых источников электроэнергии. Эти источники должны практически мгновенно замещать отключившийся основной источник и иметь большой коэффициент готовности. Кроме того, они должны обеспечивать автономный режим работы предприятия в течение длительного времени. В настоящее время наибольшее распространение получили собственные электростанции на обслуживаемых пунктах, оборудованные автоматизированными дизель-генераторными агрегатами, и аккумуляторные батареи, а на необслуживаемых регенерационных пунктах - аккумуляторные батареи, работающие в буфере с выпрямительными устройствами;

применение установок гарантированного питания постоянного и переменного тока, в состав которых входят преобразовательные устройства;

автоматизация электропитаюших установок, предусматривающая выполнение основных функций электропитающих устройств без вмешательства эксплутационного персонала;

применение современных полупроводниковых приборов, а также введение избыточности элементов, что существенно повышает надежность электропитания;

построение систем и устройств электропитания с максимальной унификацией оборудования;

возможное использование дистанционного питания НРП аппаратуры PDH по медным жилам ОК. В связи с резким увеличением длин РУ в последнее время аппаратуру НРП стремятся располагать в узлах связи населенных пунктов, где имеется гарантированное питание. В этом случае используются ОК, не содержащих металлических элементов.

 

1.10 Организация токораспределительной сети ЛАЦ

Токораспределительная сеть для питания проектируемой аппаратуры по напряжению минус 24 В (или -48 В, -60 В) рассчитывается по методике, разработанной ЦНИИСом «Методика расчёта токораспределительной сети с учётом проекта допустимых норм нестандартных изменений напряжения».

Необходимость расчёта токораспределительной сети вызвана тем, что к устанавливаемой аппаратуре ВОСП, выполненной на микросхемах средней и большой степени интеграции, предъявляются жесткие требования по допустимым изменениям напряжения, возникающим при нестационарных процессах в системе электропитания.

Наибольшие изменения напряжения питания аппаратуры возникают при резких изменениях тока нагрузки в электропитающей установке и токораспределительной сети. Также изменения нагрузки могут иметь место в аварийных ситуациях, главным образом, при коротких замыканиях (К.З.) в токораспределительной сети (ГРС), на входных клеммах питания аппаратуры и т.п.

В этом случае ток К.З. может достигать нескольких тысяч ампер и, протекая по ТРС, создает запас энергии в её индуктивности. В результате этого после срабатывания защиты, отсекающей участок с К.З., возникают опасные перенапряжения.

Ограничением напряжения на входе электропитающего устройства (ЭПУ), в ТРС и аппаратуре можно обеспечить сохранность и работоспособность аппаратуры. В качестве мер ограничения перенапряжения используются включение автоматических выключателей в рядовой минусовой фидер, резко уменьшающих время протекания процесса К.З., увеличение сопротивления рядовой минусовой проводки путём включения в эту проводку дополнительных резисторов, ограничивающих величину тока К.З., и снижение индуктивности ТРС путём максимального сближения разнополярных питающих фидеров, что также снижает запасенную энергию, а следовательно, и перенапряжения. С целью максимального снижения перенапряжения используется магистрально-радиальная проводка от существующей электропитающей установки токораспределительного оборудования.

  1.11 Защита ВОЛС от внешних электромагнитных влияний

В зонах повышенного электромагнитного влияния необходимо предусмотреть защиту BOЛC. Радикальным средством защиты ВОЛС от электромагнитных воздействий является прокладка ВОК без металлических элементов. На одном РУ должен быть кабель только одной марки, с одним типом ОВ и одним типом центрального силового элемента. Применение ВОК без металлических элементов имеет свои достоинства и недостатки, основные сведения о которых даны в таблице 7:

Таблица 7 Достоинства и недостатки ВОК

ОК без металлических элементов Комбинированные ОК
Преимущества Недостатки Преимущества Недостатки
Не подвержены эл. магнитным влияниям и ударам молнии Отсутствие жил ДП, электропитание от внешних источников Возможность организации ДП по медным жилам Необходимость защиты от внешних эл. Магнитных влияний и ударов молнии
Меньше наружный диаметр и масса. Строительная длина 2...3 км Отсутствие системы поиска трассы и глубины залегания Наличие системы и приборов для определения трассы и глубины прокладки ОК Увеличение наружного диаметра и массы, уменьшение строительной длины
Экономия меди и стали Отсутствие контроля технического состояния ОК Возможность постоянного контроля технического состояния ОК Дополнительный расход меди и стали
Невозможность прокладки на речных переходах, в районах вечной мерзлоты и заселенных грызунами Металлическая оболочка гарантирует защиту ОВ от проникновения влаги Усложнение монтажа соединительных муфт
Использование силового элемента из стеклопластика, повышает стоимость ОК Возможность прокладки в любых зонах и грунтах. Большее растягивающее усилие, чем у ОК без металлических элементов

В ряде случаев, например, при необходимости обеспечения ДП НРП, повышенной прочности ВОК на разрыв (при прокладке через судоходные реки, в районах вечной мерзлоты) и т.п. использование ВОК без металлических элементов недопустимо.

В этом случае проект защиты кабельной магистрали от опасных и мешающих влияний ЛВН (ЛЭП. эл.ж.д.) разрабатывается так же, как на магистралях кабелей связи с медными жилами. При этом необходимо учитывать, что в соответствии с ТУ на отечественные ВОК последние должны выдерживать испытания номинальным напряжением между жилами 5000 В постоянного тока или 2500 В переменного тока частотой 50 Гц в течение 2 минут. ВОК должны выдерживать испытание номинальным напряжением между жилами и остальными металлическими элементами, соединенными вместе, 20 кВ постоянного тока или 10 кВ переменного тока частотой 50 Гц в течение 5 с. ВОК должен выдерживать испытание номинальным напряжением между металлической оболочкой и броней, броней и водой 20 кВ постоянного тока или 10 кВ переменного тока частотой 50 Гц в течение 5 с.


2. Экономическая часть

Помимо технической части проект как техническое предложение организации линии должен содержать немаловажную экономическую обоснованность проектируемого объекта (А выгодно ли проектировать данный объект? Во сколько это обойдется? Каковы показатели экономической эффективности капитальных вложений? срок окупаемости?). Экономическая часть включает в себя:

1.  Расчет капитальных затрат

2.  Расчет численности производственных работников

3.  Затраты на производство услуг связи

4.  Расчет доходов от услуг связи

2.1 Расчет капитальных затрат

 

Капитальные затраты рассчитываются на оборудование ЛАЦ пунктов, на линейные сооружения, на оборудование электропитающих установок (ЭПУ).

Таблица 8 Смета затрат на линейные сооружения.

Наименование затрат Количество единиц, шт. Сметная стоимость, тыс. руб.
Единицы Общая
Базовый модуль №1 с двумя оптическими приемопередатчиками, каждый работает по двум волокнам 2 52,030 104,06
Модуль управления 2 19,360 38,72
Модуль расширения на 21 поток Е1 6 16,940 101,64
Транспортные расходы (3 %) 7,33
Заготовительно-складские расходы (1,5 %) 3,66
Монтаж и настройка оборудования с учетом накладных и плановых накоплений (10 %) 24,4
Итого 279,810

Таким образом получилось, что на оборудование оконечных пунктов необходимо затратить 279,810 тыс. руб. для организации 155,52 Мбит – го потока между Магнитогорском и Учалами.

Таблица 9 Смета затрат на линейные сооружения.

Наименование затрат

Единицы

измерения

Количество

единиц

Сметная стоимость тыс. руб.
Единицы Общая
Приобретение ОКБ км 112 52,500 5880,000
Приобретение оптических муфт МТОК шт. 22 3,123 68,706
Приобретение на пачткорды, SM-3.0-FC/UPC-FC/UPC-4м шт. 4 0,261 1,044
Оптический кросс, ШКОС-М-1U/2-8FC/D/SM/APC  к – т 2 3,188 6,376
Транспортные расходы на приобретение 3% 178,684
Заготовительные и складские затраты 1.5% 89,342
Строительно-монтажные работы по прокладке ОК 20% 1191,225
Итого 7415,377

Если сравнить затраты на линейные сооружения (без учета регенераторов, которые имеют практически одинаковую стоимость с мультиплексорами) и на станционное оборудование ЛАЦ, то видно, что целесообразнее положить долговечный, надежный (устойчивый к температурным, электромагнитным воздействиям) кабель с большим потенциалом (с большим числом волокон и их пропускной способности). Целесообразнее выбрать и лучший способ прокладки, а именно в нашей полосе (если это возможно и позволяет грунт), - прокладку в грунт.

Капитальные затраты на ЭПУ принимаются как 10 % от стоимости линейных сооружений, то есть 741,537тыс. руб.

Итог расчета капитальных затрат приведем в следующей таблице:


Таблица 10 Расчет капитальных затрат
Наименование капитальных затрат Капитальные затраты, тыс.руб. Структура капитальных затрат, %
Каналообразующая аппаратура 279,810 3,3
Кабельная линия 7415,377 87,9
ЭПУ 741,537 8,8
Итого 8436,724 100%

Информация о работе «Строительство соединительных линий между узлами коммутации г. Магнитогорска и г. Учалы»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 46998
Количество таблиц: 14
Количество изображений: 4

0 комментариев


Наверх