4. Плівкотвірні полімерні матеріали

Поліолефіни

 

Поліолефини нині є одними з найбільш поширених великотоннажних полімерів, що випускаються в нашій країні, і є дуже значним класом термопластів універсального призначення. Але найбільш важливі вони для отримання плівок, особливо поліетилен низької і високої щільності і поліпропілен. Роботи в області хімії і технології поліолефінов ведуться по двох напрямах. Перший - розробка високопродуктивних великотоннажних процесів полімеризації етилену і пропілену з використанням високоефективних каталізаторів. Другий - модифікування по-лиэтилена і поліпропілену за рахунок введення мінеральних і полімерних наповнювачів, металли-зацией і так далі і створення нових полиолефинов і сополімерів на основі етилену і інших олефинов, що мають гнучкість, морозостійкість, стійкістю до розтріскування під навантаженням і так далі

Полімери етилену - із зміненими експлуатаційними властивостями і отримані за досконалішою технологією - в осяжному майбутньому залишаться найбільш важливим плівкотвірним полімерним матеріалом. Цьому сприяє доступність і дешевизна мономерів, а також досягнутий високий технічний і технологічний рівень установок полімеризацій, на яких з прийнятними витратами постійно впроваджуються в масове виробництво вдосконалені марки.

У цьому розділі розглянуті наступні поліолефіни: поліетилен низького і високого тиску, поліпропілен і сополімери, а також сополімери етилену з вінілацетатом. Поліетилени низького і високого тиску розглянуті окремо, хоча нині існує широкий спектр полімерних матеріалів, отриманих сополімеризацією етилену з невеликою кількістю інших олефинов, таких як бутен-1 або змішенням поліетиленів високого і низького тиску (поліетилен середньої щільності).

Поліетилен отримують в реакторах автоклавного або трубчастого типу. Полімеризація етилену в більшості промислових процесів йде при тиску від 100 до 300 МПа і температурі від 100 до 300 ° C . При температурі вище 300 ° C починається деструкція полімеру. В процесі виробництва етилен ретельно очищають і пропускають над каталізатором з відновленої міді для видалення слідів кисню. Після чого в нього вводять певну кількість кисню, необхідне в якості ініціатора. Потім гази стискують в багатостадійних компресорах і за допомогою спеціального компресора закачують в реакційний апарат автоклавного або трубчастого типу, де і відбувається процес полімеризації, що супроводжується виділенням значної кількості теплоти. В процесі полімеризації забезпечується ретельний контроль концентрації каталізатора, температури і тиску. Етилен, що не прореагував, відділяють від розплаву полімеру і повертають в реактор. Далі полімер екструдують у вигляді безперервних джгутів, охолоджують і нарізують на гранули. Плівкові марки зазвичай піддають додатковій гомогенізації в змішувачі.

У поліетилені з високою молекулярною масою набрякання менше. Деякі полярні органічні речовини можуть викликати поверхневе розтріскування поліетилену низького тиску (ПЕНТ). Це явище може бути викликане хімічними речовинами, які зазвичай не розчиняють поліетилен. Проте за наявності напруги ті ж самі речовини викликають поверхневі тріщини або навіть повне руйнування матеріалу. Типовими реагентами, що викликають розтріскування, являються миючі засоби, деякі ефірні, рослинні олії, бензальдегид і нітробензол. Розтріскування може бути зменшене за рахунок використання високомолекулярних марок поліетилену. Застосування відповідних добавок дозволяє отримувати на основі поліетилену низької щільності плівки з високим ковзанням і низькою слипаемостью. Плівка не має запаху і смаку, що дозволяє використовувати її як пакувальний матеріал для харчових продуктів.

Лінійний поліетилен низької густини (ЛПЕНГ) використовують і для отримання плівки, що розтягується (стрейч). Проте плівки, що розтягуються, з ЛПЕНГ мають меншу в порівнянні з плівками ПВХ клейкість. Одним з шляхів вирішення цієї проблеми є введення в полімер добавок, що збільшують клейкість. Інший шлях - надання поверхні плівки шорсткості механічним шляхом. ЛПЕНГ застосовують також при виготовленні багатошарових плівок в якості одного з шарів, що дозволяє понизити їх загальну товщину.

Поліетилен низького тиску.(ПЕНТ)

На початку 50-х років професор Циглер, вивчаючи металоорганічні сполуки, відкрив каталізатори, які дозволяли проводити полімеризацію етилену при тиску близькому до атмосферного. Приблизно в той же час в США фірмами Phillips Petroleum і Standard Oil були розроблені інші два методи низького тиску. Ці відкриття були важливі не лише через застосування іншого методу, але і тому, що отримувані продукти за своїми властивостями істотно відрізнялися від звичайного поліетилену.

Поліетилен низького тиску (високої щільності) отримують полімеризацією етилену при тиску, близькому до атмосферного, на комплексних металоорганічних каталізаторах методом, що суспензує або газофазним.

У першому використовують частково відновлений оксид хрому, нанесений на алюмосилікат або оксид нікелю на активованому вугіллі в якості каталізаторів. Каталітична система суспензована в рідкому вуглеводні, через який пропускають газоподібний етилен. Тиск близько 3,5-4 атмосфер, температура 50-75 ° C. Полімер, що утворився, випадає у вигляді зернистого порошку. Отриману суспензію перемішують до тих пір, поки її в'язкість не стане настільки висока, що перешкоджатиме ефективному диспергуванню. Потім суміш проходить стадії виділення полімеру і регенерації розчинника. В цілому процес складається із стадії дезактивації каталізатора, його розкладання і видалення, регенерації розчинника, сушки, екструзії і грануляції полімеру.

Поліетилен, що отримується суспензійним методом, випускають без добавок (базові марки) і у вигляді композицій на їх основі із стабілізаторами, барвниками і іншими добавками. Поліетилен, що отримується газофазним методом, випускають у вигляді композицій із стабілізаторами. Базові марки роблять вищого, першого і другого сорту. ГОСТ 16338-85 встановлює наступні марки поліетилену високої щільності

Властивості плівок з поліетилену низького тиску. Плівки на основі поліетилену низького тиску жорсткіші, міцніші, менш воскоподібні на дотик в порівнянні з плівками з поліетилену високого тиску. Вони можуть бути отримані методом екструзії рукава з роздуванням або екструзією плоского рукава. Проте при рукавній екструзії отримана плівка мутніша і напівпрозора.

Температура розм'якшення у ПЕНТ вище чим у ПЕВТ (121 ° C), тому він витримує стерилізацію парою. Морозостійкість приблизно така ж, як і у ПЭВД.

Міцність при розтягуванні і стискуванні вища, ніж у ПЭВД, а опір удару і раздиру нижчий. Із-за лінійної структури макромолекули ПЭНД орієнтуються у напрямі течії, тому опір раздиру в подовжньому напрямі плівок значно нижчий, ніж в поперечному напрямі.

Проникність ПЕНТ нижча, ніж у ПЕВТ, приблизно в 5-6 разів, і він є прекрасною перешкодою волозі.

По хімічній стійкості ПЕНТ також перевершує ПЕВТ, особливо по стійкості до масел і жирів.

Із збільшенням щільності розчинність в органічних розчинниках зменшується, як і проникність по відношенню до розчинників.

ПЕНТ схильний до розтріскування під дією середовища, як і ПЕВТ, але цей ефект може бути зменшений з використанням високомолекулярних марок, у яких цей недолік відсутній.

Поліпропілен.

Починаючи з середини 60-х років, інтерес до поліпропілену стійко росте у всьому світі. Він обумовлений, з одного боку, сприятливим поєднанням фізичних, хімічних, термічних і електричних властивостей і хорошою перерабатываемостью полімеру, а з іншого боку - доступною і стабільною сировинною базою, дешевшою, ніж етилен або стирол. Усе це забезпечує поліпропілену міцне і конкурентоздатне положення на світовому ринку взагалі і на російському зокрема. Нині до 70% поліпропілену у всьому світі переробляється в литні, термоформовочные вироби і волокно. Решта кількості доводиться на экструдированые вироби і плівку.

Поліпропіленові орієнтовані і співекструдовані плівки успішно витісняють целофан, неорієнтовані конкурують з ПЕВТ і полівінілхлоридом (ПВХ). Плівки, отримані плоскощелевой екструзією і неорієнтовані раздувные широко застосовуються в різних областях упаковки. Це обумовлено головним чином прекрасною прозорістю в порівнянні з плівками з ПЕВТ у поєднанні з чудовою зварюваністю на пакувальних машинах.

Поліпропілен і його сополімери (ГОСТ 26996 - 86) отримують сополімеризацією пропілену і етилену у присутності металлорганических каталізаторів. Поліпропілен відрізняється вищою температурою плавлення, ніж поліетилен, хімічною стійкістю, водостійкістю. Проте поліпропілен чутливий до дії кисню і сильних окисників. Поліпропілен випускається у вигляді композиції із стабілізаторами, барвниками і іншими добавками.

Позначення поліпропілену і композицій на його основі складається з назви матеріалу "поліпропілен" або "сополімер" і п'яти цифр. Перша цифра 2 або 0 вказує на те, що процес полімеризації протікає на комплексних металоорганічних каталізаторах при низькому або середньому тиску відповідно. Друга цифра вказує вид матеріалу : 1 - поліпропілен, 2 - сополімер пропілену. Три наступні цифри означають десятиразове значення показника плинності розплаву. Далі через тире вказують номер рецептури стабілізації. Далі сорт полімеру і позначення стандарту ГОСТ 26996 - 86.

Плівки з поліпропілену. Поліпропіленова плівка може бути отримана екструзією з роздуванням або екструзією через плоску щілину з поливом на барабан або охолодженням у водяній ванні.

Поливна плівка. Поліпропіленова плівка, отримана цим методом, має хорошу прозорість і блиск, але із зростанням товщини швидкість охолодження полотна зменшується. Це призводить до зростання сферолітів і помутнінню плівки.

Руйнівна напруга при розтягуванні полипропиленовых плівок, отриманих методом плоскощільової екструзії, в два рази вище, ніж у плівок з ПЕВТ, а опір розриву в два рази нижче. Відносне подовження при розриві цих плівок високе, тому вони можуть бути піддані холодному витягу. Одним з недоліків цих плівок є низький опір удару при температурах нижче 0 ° C . Проникність плівок, отриманих плоскощелевой екструзією, вище, ніж у плівок ПЕНТ, але значно нижче, ніж у плівок з ПЕВТ. Хімічна стійкість поліпропілену висока, особливо по відношенню до масел і жирів, і перевершує стійкість поліетилену. Також поліпропілен не піддається розтріскуванню під дією зовнішнього середовища.

Двухосноорієнтовні плівки. Подібні плівки отримують методом плоскощільової екструзії з наступним витягом одночасно в подовжньому і поперечному напрямі. Можливість орієнтування плівки одночасно в двох напрямах дозволяє створювати матеріали з широким спектром властивостей. Плівки з однаковою орієнтацією в двох напрямах мають приблизно рівну поперечну і подовжню міцність, яка перевищує міцність поливних полипропиленовых плівок в чотири рази. Опір початковому раздиру у подібних плівок великий, а самому раздиру дуже низьке. При розриві відносне подовження двухосорієнтовних дуже мале, оскільки при орієнтуванні досягається практично повний витяг матеріалу плівки.

Рукавна плівка з поліпропілену. Раздувні поліпропіленові плівки, що мають високу прозорість, були розроблені в якості альтернативи плівкам з целофану для різного роду упаковки. Їх міцність не така висока в порівнянні з двухосноориетированными полипропиленовыми плівками. Проте для деяких упаковок це є перевагою, оскільки полегшується їх розкриття. Паропроникність таких плівок вище, що важливо, наприклад, для упаковки хліба і зелені.

Плівки на основі севилена можуть бути отримані екструзією з роздуванням або екструзією через плоскощільову голівку. Плівки, отримані плоскощільовою екструзією, мають велику прозорість, але меншу міцність в порівнянні з раздувними.

З севилена виготовляються "стрейч" плівки, що розтягуються, плівки для теплиць, гнучких завіс для проходів і так далі.

Властивості севиленовых плівок міняються залежно від відсоткового вмісту вінілацетата в полімері. В порівнянні з плівками з поліетилену високого тиску сэвилен має нижчу температуру зварювання. Більший опір проколу. Велику еластичність і вищу стійкість до розтріскування під дією довкілля. Підвищені газо- і паропроникність, велику стійкість до вигину, кращі властивості при низькій температурі, велику клейкість. Можуть зварюватися струмами високої частоти. Фізіологічно нешкідливі.

Вінілові полімери

Сімейство вінілових полімерів отримують полімеризацією деяких заміщених этиленов. Заміщеним є тільки один з атомів водню на інший атом або групу атомів, таких як ацетатна група у разі винилацетата. Ацетатна група служить, свого роду внутрішнім пластифікатором. Заміщення призводить в цілому до підвищення фізико-механичних властивостей полімерів.

Полівінілхлорид.

Полівінілхлорид (ПВХ) є продуктом полімеризації вінілхлорида. У промисловості полімеризація робиться суспензійним, блоковим і емульсивним методом. Найпоширенішим є суспензійний метод. Вінілхлорид змішують з водою, в яку додають емульгатор, наприклад метилцелюлозу, желатин або полівініловый спирт. Вода забезпечує розсіювання тепла, що утворюється в ході полімеризації. Реакція ініціюється каталізатором, який розчиняється у

вінілхлориді, але не розчиняється у воді. В якості каталізаторів можуть бути використані пероксиди бензолу або лаурила. Суміш інтенсивно перемішують, щоб добитися каплеподібної суспензії. Полімеризація триває від шести годин до діб. Полімер, що утворився, осідає у воді у вигляді шламу. Потім суміш подають в десорбуючу збірку для видалення винилхлорида, що не прореагував, фільтрують і сушать в сушарці, що безперервно обертається.

ПВХ може бути перероблений в плівку методом екструзії з роздуванням або плоскощільової екструзії. Ці процеси широко використовуються для виготовлення тонких непластифікованих або слабо пластифікованих плівок. Однією з труднощів, пов'язаних з переробкою ПВХ, є його термічна нестабільність і корозійна активність у поєднанні з високою в'язкістю розплаву. В'язкість розплаву полістиролу або поліолефінів може бути знижена при підвищенні температури переробки, але для ПВХ цей метод не підходить, оскільки він починає дуже швидко розкладатися. Головка екструзії для переробки ПВХ має бути сконструйована так, щоб по можливості уникнути зон застою розплаву.

Непластифіковані плівки отримують з введенням стабілізатора. Ефективні стабілізатори дозволяють отримати прозорі і блискучі плівки. Плівка виходить жорсткою і має високу міцність при розтягуванні. Паропроникність у ПВХ вище, ніж у поліолефінів, а газопроникність нижча. Тому ПВХ плівки служать хорошим захистом від окислення масел і жирів. Плівки з непластифікованого ПВХ мають чудову стійкість до масел, жирів, кислот і лугів. Проте вона набрякає в хлорованих вуглеводнях і кетонах. Також плівки мають невелику схильність до злипання.

Полівінілденхлорид .

Полівинілденхлорид (ПВДХ) є продуктом сополімеризації вінілхлорида і вінілденхлорида. ПВДХ плівка може бути отримана методом екструзії з роздуванням рукава або плоскощільовою екструзією з поливом на охолоджуваний барабан. При отриманні орієнтованих плівок прийнятніше використовувати перший метод.

Мінімальна кристалічність забезпечує хорошу розтяжність ПВДХ плівок. Тому для запобігання зростанню кристалів в полімері при плоскощільовій екструзії, плівку необхідно різко охолоджувати у водяній ванні або поливом на барабан. Швидкість кристалізації ПВДХ при кімнатній температурі досить висока. Внаслідок цього плівку, отриману плоскощільовою екструзією необхідно відразу ж орієнтувати.

Для отримання двухосноорієнтовочних плівок прийнятніше використовувати екструзію з роздуванням рукава. Оскільки при цьому можна отримати плівку з рівною орієнтацією в подовжньому і поперечному напрямі.

Орієнтована ПВДХ плівка прозора і має хороші характеристики міцності. Температура зварювання складає 120 ¸ 160 ° C . Але нестійка при тривалому нагріві до температур вище 60 ° C Плівка має високий опір раздиру, але на пакувальному устаткуванні переробляється досить важко із-за своєї м'якості.

ПВДХ плівки мають прекрасні бар'єрні властивості навіть при відносно малій товщині. Тому її доцільно використовувати як одного з шарів в співекструдованих плівках. Також ПВДХ широко використовується для покриття паперу, целофану, поліпропілену та ін., але це вимагає додаткової технологічної операції, виключеної при соэкструзії.



Информация о работе «Екструзія видувної плівки»
Раздел: Промышленность, производство
Количество знаков с пробелами: 97879
Количество таблиц: 1
Количество изображений: 8

Похожие работы

Скачать
126087
7
0

... Загалом, на вітчизняних виробах найчастіше зустрічаються облой і раковини, а на виробах іноземних виробників – тріщини, сколи, царапини та сліди клею у місцях з’єднання деталей.   3.3 Споживча оцінка асортименту та якості посуду з полімерних матеріалів. Провівши експериментальне дослідження асортименту полімерного посуду у ВАТ «Фуршет» можна сказати, що асортимент цих товарів представлений ...

0 комментариев


Наверх